Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và \(x-3y+4\text{z}=62\)
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4\text{z}}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow\frac{x}{4}=2\Rightarrow x=4.2=8\)
\(\Rightarrow\frac{y}{3}=2\Rightarrow y=3.2=6\)
\(\Rightarrow\frac{z}{9}=2\Rightarrow z=2.9=18\)
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{3y}{3.3}=\frac{4z}{4.9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x = 4.2 = 8
=> y = 3.2 = 6
=> z = 2.9 = 18
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4x}{4-9+36}=\frac{62}{31}=2\)
=>x=4.2=8
=>y=3.2=6
=>x=9.2=18
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\)\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất của dãy tủ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\frac{x}{4}=2=>x=8\)
\(\frac{3y}{9}=2=>y=6\)
\(\frac{4z}{36}=2=>z=18\)
Ta có: a) \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\x-3y+4x=62\end{cases}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2}\)
\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.9=18\end{cases}}\)
THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow\hept{\begin{cases}x=4\cdot2=8\\y=3\cdot2=6\\z=9\cdot2=18\end{cases}}\)
từ \(x:y:z=2:3:4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(=\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)
\(=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot1=2\\y=3\cdot1=3\\z=4\cdot1=4\end{cases}}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\frac{x}{4}=2\Rightarrow x=8\)
\(\frac{y}{3}=2\Rightarrow y=6\)
\(\frac{z}{9}=2\Rightarrow z=18\)
vậy x=8
y=6
z=18
a. \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
Theo t/c dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow\frac{x}{4}=2\Rightarrow x=2.4=8\)
\(\Rightarrow\frac{3y}{9}=2\Rightarrow3y=2.9=18\Rightarrow y=18:3=6\)
\(\Rightarrow\frac{4z}{36}=2\Rightarrow4z=2.36=72\Rightarrow z=72:4=18\)
b. \(\frac{x}{y}=\frac{7}{20}\Rightarrow\frac{x}{7}=\frac{y}{20};\frac{y}{z}=\frac{5}{8}\Rightarrow\frac{y}{5}=\frac{z}{8}\)
Ta có: \(\frac{x}{7}=\frac{y}{20};\frac{y}{5}=\frac{z}{8}\Rightarrow\frac{x}{35}=\frac{y}{100}=\frac{z}{160}\Rightarrow\frac{2x}{70}=\frac{5y}{500}=\frac{2z}{320}\)
Theo t/c dãy tỉ số bằng nhau:
\(\frac{2x}{70}=\frac{5y}{500}=\frac{2z}{320}=\frac{2x+5y-2z}{70+500-320}=\frac{100}{250}=\frac{2}{5}\)
\(\Rightarrow\frac{2x}{70}=\frac{2}{5}\Rightarrow2x=\frac{2}{5}.70=28\Rightarrow x=28:2=14\)
\(\Rightarrow\frac{5y}{500}=\frac{2}{5}\Rightarrow5y=\frac{2}{5}.500=200\Rightarrow y=200:5=40\)
\(\Rightarrow\frac{2z}{320}=\frac{2}{5}\Rightarrow2z=\frac{2}{5}.320=128\Rightarrow z=128:2=64\)
a) Ta có: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=2.4=8
3y=2.9=18 => y=6
4z=2.36=72 => z=18
Vậy x=8; y=6; z=18
b) Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
=> x=3k; y=4k
Mà: xy=192
=> 3k.4k=192
=> 12k2=192
=> k2=16
=> k=\(\pm\)4
TH1: k=4
=> x=4.3=12; y=4.4=16
TH2: k=-4
=> x= -4.3=-12; y=-4,3.4=-16
Vậy (x;y) thõa mãn là (12;16);(-12;-16)
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{62}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2.4\\y=2.3\\z=2.9\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=8\\y=6\\z=18\end{array}\right.\)
Vậy x = 8 ; y = 6 ; z = 18
b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{xy}{3y}=\frac{192}{3y}\)
\(\Rightarrow\frac{y}{4}=\frac{192}{3y}\Rightarrow y.3y=192.4\)
\(\Rightarrow y^2.3=768\Rightarrow y^2=\frac{768}{3}=256\)
\(\Rightarrow y=\sqrt{256}=16;y=-\sqrt{256}=-16\)
Với y = 16 => x = \(\frac{192}{16}=12\)
Với y = -16 => x = \(\frac{192}{-16}=-12\)
Vậy x = 12 ; y = 16
hoặc x = -12 ; y = -16
a) Đặt 2x - 1 / 5 = 3y + 2 / 4 = 4z - 3 / 5 = k
=> 2x = 5k + 1; 3y = 4k - 2; 4z = 5k + 3
=> 2x - 3y + 4z = 5k + 1 - 4k - 2 + 5k + 3 = 6k + 2 = 9
=> 6k = 9 - 2 = 7
=> k = 7 : 6 = 7/6
2x =5k