Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc trung bình bằng tổng quãng đường chia cho tổng thời gian đi hết quãng đường đó.
Quãng đường người đi xe đạp đã đi là: S = 1,2 + 0,6 = 1,8 (km)
Thời gian người đó đi là: t = 6 + 4 = 10 (phút) = 1/6 (h)
Vận tốc trung bình: \(v=\dfrac{S}{t}=1,8:\dfrac{1}{6}=10,8\) (km/h)
Đổi: \(6ph=\dfrac{1}{10}h,4ph=\dfrac{1}{15}h\)
\(\left\{{}\begin{matrix}v_1=\dfrac{S_1}{t_1}=\dfrac{1,2}{\dfrac{1}{10}}12\left(km/h\right)\\v_2=\dfrac{S_2}{t_2}=\dfrac{0,6}{\dfrac{1}{15}}=9\left(km/h\right)\\v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{1,2+0,6}{\dfrac{1}{10}+\dfrac{1}{15}}=10,8\left(km/h\right)\end{matrix}\right.\)
Tóm tắt:
\(S_1=1,2km\), \(S_2=0,6km\)
\(t_1=6\text{phút}=0,1\text{giờ}\), \(t_2=4\text{phút}=\dfrac{1}{15}\text{giờ}\)
\(v_1=?\text{km/h},v_2=?\text{km/h},v_{tb}=?\text{km/h}\)
Giải:
Vận tốc trung bình khi đạp xe: \(v_1=\dfrac{S_1}{t_1}=\dfrac{1,2}{0,1}=12\text{(km/h)}\)
Vận tốc trung bình khi đi bộ: \(v_2=\dfrac{S_2}{t_2}=0,6\div\dfrac{1}{15}=9\text{(km/h)}\)
Vận tốc trung bình khi đi cả đoạn đường: \(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{1,2+0,6}{0,1+\dfrac{1}{15}}=10,8\text{(km/h)}\)
D
Tổng thời gian là t = t 1 + t 2 = 10 + 20 = 30 phút = 0,5h.
Tổng đoạn đường là s = v ( t 1 + t 2 ) = 20.(0,5) = 10km.
Bài 1: Tóm tắt
\(S_1=24km\)
\(V_1=12km\)/\(h\)
\(S_2=12km\)
\(V_2=45'=0,75h\)
_______________
a) \(t_1=?\)
b) \(V_{TB}\)
Giải
a) Thời gian người đó đạp xe trên quãng đường đầu là: \(t_1=\frac{S_1}{V_1}=\frac{24}{12}=2\left(h\right)\)
b) Ta có công thức tính vận tốc trung bình là: \(V=\frac{S_1+S_2+....+S_n}{t_1+t_2+t_3+....+t_n}\)
Vậy vận tốc trung bình của người đó trên quãng đường là:
\(V_{TB}=\frac{S_1+S_2}{t_1+t_2}=\frac{24+12}{2+0,75}\approx13\)(km/h)
Bài 2: Tóm tắt
\(S_1=600m=0,6km\)
\(t_1=2'=\frac{1}{30}\left(h\right)\)
\(S_2=10,8km\)
\(t_2=0,75h\)
_________________
a) \(V_1=?;V_2=?\)
b) \(S_{KC}=?\)
Giải
a) Vận tốc của người thứ nhất là: \(V_1=\frac{S_1}{t_1}=\frac{0,6}{\frac{1}{30}}=18\)(km/h)
Vận tốc của người thứ 2 là: \(V_2=\frac{S_2}{t_2}=\frac{10,8}{0,75}=14,4\) (km/h)
=> Người thứ nhất đi nhanh hơn người thứ 2.
b) Do đi cùng lúc => thời gian đi của 2 người là như nhau và vận tốc đã cho
=> Hai người cách nhau số km là: \(S-t\left(V_1+V_2\right)=S-\frac{1}{3}\left(18+14,4\right)=S-10,8\)
Theo đề thì còn cần phải dựa vào khoảng cách của 2 người khi 2 người bắt đầu đi nữa.
a) Thời gian người đó đạp xe trên quãng đường thứ nhất là :
24 : 12 = 2 (giờ)
b) Đổi : 45 phút = 0,75 giờ
=> Vận tốc trung bình của người đi xe đạp trên cả quãng đường là :
(S1 + S2) / (t1 + t2) = (12+24) / (2+0,75) = 13 (km/h)
\(20p=\dfrac{1}{3}h;15p=0,25h;4000m=4km\)
a. \(v''=s'':t''=4:0,25=16\left(\dfrac{km}{h}\right)\)
b. \(v=\dfrac{s'+s''}{t'+t''}=\dfrac{10+4}{\dfrac{1}{3}+0,25}=24\left(\dfrac{km}{h}\right)\)
Vận tốc xe trên đoạn đường bằng phẳng:
\(v=\dfrac{10}{\dfrac{20}{60}}=30\)km/h
Vận tốc trung bình của xe:
\(v_{tb}=\dfrac{10+4}{\dfrac{20}{60}+\dfrac{15}{60}}=24\)km/h
Vận tốc của người đó trên quãng đường 1 là
\(v=\dfrac{s}{t}=1,8:0,15=12\left(kmh\right)\)
Vận tốc của người đó trên quãng đường 2 là
\(v=\dfrac{s}{t}=2,7:0,25=10,8\left(kmh\right)\)
Vận tốc trung bình của người đó trên cả 2 quãng đường là
\(v_{tb}=\dfrac{s+s'}{t+t'}=\dfrac{1,8+2,7}{0,25+0,15}=\dfrac{4,5}{0,4}=11,25\left(kmh\right)\)
=> Chọn B
S1 = 1,2 km
t1 = 6 phút = 0,1 giờ
S2 = 0,6 km
t2 = 4 phút = \(\frac{1}{15}\) giờ.
vtb = ?
Giải:
Vận tốc trung bình trên cả quãng đường là:
Vtb = \(\frac{S_1+S_2}{t_1+t_2}=\frac{1,2+0,6}{\frac{1}{10}+\frac{1}{15}}=10,8\) (km/h)
ko cần tóm tắt đâu nha