K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

1/

Phương trình \(x^2-2\left(k+3\right)x+2k-1=0\left(1\right)\)

Xét phương trình (1) có:

\(\Delta=4\left(k+3\right)^2-4\left(2k-1\right)\)

= \(4k^2+24k+36-8k+4\)

= \(4k^2+16k+40\)

= \(\left(2k+4\right)^2+24\)

Ta có: \(\left(2k+4\right)^2\ge0\) với mọi k

\(\Rightarrow\left(2k+4\right)^2+24>0\) với mọi k

\(\Rightarrow\Delta>0\) với mọi k

\(\Rightarrow\) Phương trình (1) có 2 nghiệm phân biệt với mọi k

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2k+6\\x_1.x_2=2k-1\end{matrix}\right.\)

Theo đề bài ta có:

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{3}{x_1x_2}=2\)

\(\Leftrightarrow\dfrac{x_2+x_1+3}{x_1x_2}=\dfrac{2x_1x_2}{x_1x_2}\)

\(\Leftrightarrow x_1+x_2+3-2x_1x_2=0\)

\(\Leftrightarrow2k+6+3-2\left(2k-1\right)=0\)

\(\Leftrightarrow-2k=-11\)

\(\Leftrightarrow k=\dfrac{11}{2}\)

Vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{3}{x_1x_2}=2\) thì \(k=\dfrac{11}{2}\)

9 tháng 5 2017

bài 2 có chút j đó sai...

NV
14 tháng 4 2022

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

15 tháng 4 2022

undefined

x1+x2=2m-2

2x1-x2=2

=>3x1=2m và 2x1-x2=2

=>x1=2m/3 và x2=4m/3-2

x1*x2=-2m+1

=>8/9m^2-4/3m+2m-1=0

=>8/9m^2+2/3m-1=0

=>8m^2+6m-9=0

=>m=3/4 hoặc m=-3/2

31 tháng 3 2023

\(x^2-2\left(m-1\right)x-2m+1=0\left(1\right)\)

Để phương trình (1) có 2 nghiệm phân biệt thì:

\(\Delta>0\Rightarrow\left[2\left(m-1\right)\right]^2-4\left(-2m+1\right)>0\)

\(\Leftrightarrow4\left(m-1\right)^2+8m-4>0\)

\(\Leftrightarrow4m^2-8m+4+8m-4>0\)

\(\Leftrightarrow4m^2>0\Leftrightarrow m\ne0\)

Vậy với \(\forall m\ne0\) thì phương trình (1) có 2 nghiệm phân biệt.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m+1\end{matrix}\right.\)

Ta có \(2x_1-x_2=2\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)-2=3x_2\left(1'\right)\\\left(x_1+x_2\right)+2=3x_1\left(2'\right)\end{matrix}\right.\)

Lấy (1') nhân cho (2') ta được:

\(\left[2\left(x_1+x_2\right)-2\right]\left[\left(x_1+x_2\right)+2\right]=9x_1x_2\)

\(\Rightarrow\left[2.2\left(m-1\right)-2\right]\left[2\left(m-1\right)+2\right]=9\left(-2m+1\right)\)

\(\Leftrightarrow\left(4m-6\right).2m=-18m+9\)

\(\Leftrightarrow8m^2+6m-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{-3}{2}\end{matrix}\right.\)

Thử lại ta có m=3/4 hay m=-3/2

 

18 tháng 5 2022

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'=\left(m+1\right)^2+32>0\left(\text{đúng }\forall m\right)\)

Theo Vi-ét: \(\begin{cases} x_1+x_2=-2(m+1)=-2m-2\\ x_1x_2=-8 \end{cases}\)

Vì $x_1$ là nghiệm của PT nên  \(x_1^2=-2(m+1)x_1+8\)

Ta có \(x_1^2=x_2\)

\(\Leftrightarrow-2\left(m+1\right)x_1+8=x_2\\ \Leftrightarrow x_2+2mx_1+2x_1-8=0\\ \Leftrightarrow\left(x_1+x_2\right)+2mx_1+x_1-8=0\\ \Leftrightarrow x_1\left(2m+1\right)-2m-10=0\\ \Leftrightarrow x_1=\dfrac{2m+10}{2m+1}\)

Mà \(x_1+x_2=-2m-2\Leftrightarrow x_2=-2m-2-\dfrac{2m+10}{2m+1}=\dfrac{-4m^2-8m-12}{2m+1}\)

Ta có \(x_1x_2=-8\)

\(\Leftrightarrow\dfrac{2m+10}{2m+1}\cdot\dfrac{-4m^2-8m-12}{2m+1}=-8\\ \Leftrightarrow\left(2m+10\right)\left(m^2+2m+3\right)=2\left(2m+1\right)^2\\ \Leftrightarrow m^3+3m^2+9m+14=0\\ \Leftrightarrow m^3+2m^2+m^2+2m+7m+14=0\\ \Leftrightarrow\left(m+2\right)\left(m^2+m+7\right)=0\\ \Rightarrow m=-2\)

Vậy $m=-2$

NV
19 tháng 8 2021

\(\Delta=1-4m>0\Rightarrow m< \dfrac{1}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)

\(\left(x_1^2+x_2+m\right)\left(x_2^2+x_1+m\right)=m^2-m-1\)

\(\Leftrightarrow\left[x_1\left(x_1+x_2\right)-x_1x_2+x_2+m\right]\left[x_2\left(x_1+x_2\right)-x_1x_2+x_1+m\right]=m^2-m-1\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1+x_2\right)=m^2-m-1\)

\(\Leftrightarrow m^2-m-1=1\)

\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2>\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)

\(\text{Δ}=\left[-\left(m+1\right)\right]^2-4\cdot1\cdot m\)

\(=\left(m+1\right)^2-4m\)

\(=\left(m-1\right)^2>=0\forall m\)

=>Phương trình luôn có hai nghiệm

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+1\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=x_1x_2-2\left(x_1+x_2\right)+6\)

=>\(\left(m+1\right)^2-2m=m-2\left(m+1\right)+6\)

=>\(m^2+1=m-2m-2+6\)

=>\(m^2+1=-m+4\)

=>\(m^2+m-3=0\)

=>\(m=\dfrac{-1\pm\sqrt{13}}{2}\)

22 tháng 1

a) ∆' = [-(m - 3)]² - (m² + 3)

= m² - 6m + 9 - m² - 3

= -6m + 6

Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0

⇔ -6m + 6 ≥ 0

⇔ 6m ≤ 6

⇔ m ≤ 1

Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm

b) Theo định lý Viét, ta có:

x₁ + x₂ = 2(m - 3) = 2m - 6

x₁x₂ = m² + 3

Ta có:

(x₁ - x₂)² - 5x₁x₂ = 4

⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4

⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4

⇔ (x₁ + x₂)² - 9x₁x₂ = 4

⇔ (2m - 6)² - 9(m² + 3) = 4

⇔ 4m² - 24m + 36 - 9m² - 27 = 4

⇔ -5m² - 24m + 9 = 4

⇔ 5m² + 24m - 5 = 0

⇔ 5m² + 25m - m - 5 = 0

⇔ (5m² + 25m) - (m + 5) = 0

⇔ 5m(m + 5) - (m + 5) = 0

⇔ (m + 5)(5m - 1) = 0

⇔ m + 5 = 0 hoặc 5m - 1 = 0

*) m + 5 = 0

⇔ m = -5 (nhận)

*) 5m - 1 = 0

⇔ m = 1/5 (nhận)

Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu

a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)

\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)

\(=4m^2-24m+36-4m^2-12=-24m+24\)

Để phương trình có hai nghiệm thì \(\Delta>=0\)

=>-24m+24>=0

=>-24m>=-24

=>m<=1

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2-5x_1x_2=4\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)

=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)

=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)

=>\(4m^2-24m+36-9m^2-27-4=0\)

=>\(-5m^2-24m+5=0\)

=>\(-5m^2-25m+m+5=0\)

=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)

=>(m+5)(-5m+1)=0

=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)

NV
19 tháng 2 2022

Đặt \(x^2=t\) \(\Rightarrow t^2+\left(1-m\right)t+2m-2=0\) (1)

Pt đã cho có 4 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(1-m\right)^2-8\left(m-1\right)>0\\t_1+t_2=m-1>0\\t_1t_2=2m-2>0\end{matrix}\right.\) \(\Rightarrow m>9\)

Khi đó, do vai trò của \(x_1;x_2;x_3;x_4\) như nhau, ko mất tính tổng quát, giả sử \(x_1=-\sqrt{t_1};x_2=\sqrt{t_1}\) ; \(x_3=-\sqrt{t_2};x_4=\sqrt{t_2}\)

\(\Rightarrow x_1x_2x_3x_4=t_1t_2\) ; \(x_1^2=x_2^2=t_1\) ; \(x_3^2=x_4^2=t_2\)

\(\Rightarrow\dfrac{x_1x_2x_3x_4}{2x_4^2}+\dfrac{x_1x_2x_3x_4}{2x_3^2}+\dfrac{x_1x_2x_3x_4}{2x_2^2}+\dfrac{x_1x_2x_3x_4}{2x_1^2}=2017\)

\(\Leftrightarrow\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_1}+\dfrac{t_1t_2}{2t_1}=2017\)

\(\Leftrightarrow t_1+t_2=2017\)

\(\Leftrightarrow m-1=2017\Rightarrow m=2018\)

|x1|=3|x2|

=>|2m+2-x2|=|3x2|

=>4x2=2m+2 hoặc -2x2=2m+2

=>x2=1/2m+1/2 hoặc x2=-m-1

Th1: x2=1/2m+1/2

=>x1=2m+2-1/2m-1/2=3/2m+3/2

x1*x2=m^2+2m

=>1/2(m+1)*3/2(m+1)=m^2+2m

=>3/4m^2+3/2m+3/4-m^2-2m=0

=>m=1 hoặc m=-3

TH2: x2=-m-1 và x1=2m+2+m+1=3m+3

x1x2=m^2+2m

=>-3m^2-6m-3-m^2-2m=0

=>m=-1/2; m=-3/2