Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)
Nên \(x-2017=0\)
\(\Rightarrow\)\(x=2017\)
Vậy \(x=2017\)
Chúc bạn học tốt ~
Bài 1 :
\(\left(8x-5\right)\left(x^2+2014\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)
Vậy \(x=\frac{5}{8}\)
Chúc bạn học tốt ~
d) x+1/2019 + x+3/2017 = x+5/2015 + x+7/2013
<=> x+1/2019 + x+3/2017 - x+5/2015 - x+7/2013 =0
<=> ( x+1/2019 + 1) + ( x+3/2017 + 1) - ( x+5/2015 + 1) - ( x+7/2013 +1) = 0
<=> ( x+1+2019/2019) +(x+3+2017/2017) - ( x+5+2015/2015) - ( x+7+2013/2013) =0
<=> x+2020/2019 + x+2020/2017 - x+2020/2015 - x+2020/2013 =0
<=> (x+2020)× ( 1/2019 + 1/2017 - 1/2015 - 1/2013) =0
Mà 1/2019 + 1/2017 - 1/2015 - 1/2013 khác 0
=> x+2020 =0
=> x = -2020
\(\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-1\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
HOẶC\(x-1=0\Leftrightarrow x=1\)(NHẬN)
HOẶC\(x-3=0\Leftrightarrow x=3\)(NHẬN)
VẬY: tập ngiệm của pt là S={1;3}
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
a, \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
= \(\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{x^2-1}{\left(x-1\right)\left(x-3\right)}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)
( x + 5)(x - 3) = \(x^2-1\) - 8
x\(^2\) -3x + 5x -15 = \(x^2-9\)
= > \(x^2-x^2\) +2x = 15 - 9
=> 2x = 6
=> x = 3
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
\(x\ne\left\{-4;-3;-2;-1\right\}\)
\(\Leftrightarrow\frac{x^2+x+1}{x+1}-1+\frac{x^2+2x+2}{x+2}-1=\frac{x^2+3x+3}{x+3}-1+\frac{x^2+4x+4}{x+4}-1\)
\(\Leftrightarrow\frac{x^2}{x+1}+\frac{x^2+x}{x+2}-\frac{x^2+2x}{x+3}-\frac{x^2+3x}{x+4}=0\)
\(\Leftrightarrow x\left(\frac{x}{x+1}+\frac{x+1}{x+2}-\frac{x+2}{x+3}-\frac{x+3}{x+4}\right)=0\)
\(\Leftrightarrow x\left(1-\frac{1}{x+1}+1-\frac{1}{x+2}+\frac{1}{x+3}-1+\frac{1}{x+4}-1\right)=0\)
\(\Leftrightarrow x\left(\frac{1}{x+3}+\frac{1}{x+4}-\frac{1}{x+1}-\frac{1}{x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x+3}-\frac{1}{x+1}=\frac{1}{x+2}-\frac{1}{x+4}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{-2}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+2\right)\left(x+4\right)}\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)+\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow2x^2+10x+11=0\Rightarrow x=\frac{-5\pm\sqrt{3}}{2}\)
b) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\) ta có:
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow\)\(t^2+2t-24=0\)
\(\Leftrightarrow\)\(\left(1-4\right)\left(1+6\right)=0\)
đến đây bn giải tiếp