K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2015

3.(2X+3)=-X.(X-2)-1 <=>6X+9=-\(x^2\)+2X-1 <=> \(x^2\) +4x+10=0 (\(\Delta\)' =4-10=-6 nhỏ hơn 0)

pt vô nghiệm

3 tháng 7 2020

\(x^2-8x+16=0\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

3 tháng 7 2020

\(\left\{{}\begin{matrix}x-2y=-1\\3x-4y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3\left(2y-1\right)-4y=9\end{matrix}\right.\left\{{}\begin{matrix}x=11\\y=6\end{matrix}\right.\)

26 tháng 6 2020

a, thay m = 3 vào pt , ta đc

x2 - 2x + 3 = 0

\(\Leftrightarrow\left(x-1\right)^2+2=0\)

Mà (x-1)2 + 2 > 0 \(\forall x\)

=> pt vô nghiệm

b, \(\Delta^'=1-m\)

pt vô nghiệm khi \(\Delta^'< 0=>m>1\)

c, pt có 2 nghiệm pb \(\Leftrightarrow\)\(\Delta^'>0\)=> 1 - m>0 => m < 1

#mã mã#

25 tháng 7 2021

1. A

2. C 

Câu 1: A

Câu 2: C

Câu 2: 

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

5 tháng 3 2023

`x^2 -x=12`

`<=>x^2 -x-12=0`

`<=> x^2+3x-4x-12=0`

`<=> x(x+3)-4(x+3)=0`

`<=>(x+3)(x-4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

`---`

`2x^2-3x=15-4x`

`<=> 2x^2-3x+4x=15`

`<=>2x^2 +x-15=0`

`<=>2x^2+6x-5x-15=0`

`<=> 2x(x+3)-5(x+3)=0`

`<=>(x+3)(2x-5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)

`---`

`x(x-5)=24`

`<=> x^2 -5x-24=0`

`<=>x^2+3x-8x-24=0`

`<=>x(x+3) -8(x+3)=0`

`<=>(x+3)(x-8)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=8\end{matrix}\right.\)

`----`

`x(x-3)=10(x-4)`

`<=> x^2 -3x =10x -40`

`<=>x^2 -3x-10x +40=0`

`<=> x^2 -13x+40=0`

`<=>x^2-5x-8x+40=0`

`<=> x (x-5) - 8(x-5)=0`

`<=>(x-5)(x-8)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=8\end{matrix}\right.\)

5 tháng 3 2023

5. \(x^2-x=12\Leftrightarrow x^2-x-12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

6. \(2x^2-3x=15-4x\Leftrightarrow2x^2+x-15=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)

7. \(x\left(x-5\right)=24\Leftrightarrow x^2-5x-24=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

8. \(x\left(x-3\right)=10\left(x-4\right)\Leftrightarrow x^2-3x=10x-40\)

\(\Leftrightarrow x^2-13x+40=0\Leftrightarrow\left[{}\begin{matrix}x=8\\x=5\end{matrix}\right.\)

11 tháng 4 2020

\(x^2+2x+m^3-3m+3=0\)

\(\Delta'=1-\left(m^3-3m+3\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m\le-2\end{matrix}\right.\)

Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m^3-3m+3\end{matrix}\right.\)

Ta có \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(\Leftrightarrow-8+6\left(m^3-3m+3\right)=10\)

\(\Leftrightarrow6m^3-18m=0\Leftrightarrow m=-\sqrt{3}\)(theo đk)

Vậy...........

11 tháng 4 2020

mình cũng thấy sao sao ý abnj, tính mãi k ra

NV
23 tháng 4 2019

\(\Delta'=1-m+1=2-m\ge0\Rightarrow m\le2\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)

Để pt có 2 nghiệm là nghịch đảo nhau \(\Leftrightarrow x_1x_2=1\)

\(\Rightarrow m-1=1\Rightarrow m=2\)

\(\left\{{}\begin{matrix}y_1=x_1+\frac{1}{x_2}\\y_2=x_2+\frac{1}{x_1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}\\y_1y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=\frac{\left(x_1x_2+1\right)^2}{x_1x_2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-2-\frac{2}{m-1}=\frac{-2m}{m-1}\\y_1y_2=\frac{m^2}{m-1}\end{matrix}\right.\)

Theo Viet đảo, \(y_1;y_2\) là nghiệm: \(y^2+\frac{2m}{m-1}y+\frac{m^2}{m-1}=0\) (\(m\ne1\))

26 tháng 4 2019

cảm ơn nhiều nhé