Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sin x = \frac{{\sqrt 3 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{3}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \pi - \frac{\pi }{3} + k2\pi }\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi \;}\end{array}\;} \right.\left( {k \in \mathbb{Z}} \right)\)
b) \(2\cos x = - \sqrt 2 \;\; \Leftrightarrow \cos x = - \frac{{\sqrt 2 }}{2}\;\;\; \Leftrightarrow \cos x = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3\pi }}{4} + k2\pi }\\{x = - \frac{{3\pi }}{4} + k2\pi }\end{array}\;\;\left( {k \in \mathbb{Z}} \right)} \right.\)
c) \(\sqrt 3 \;\left( {\tan \frac{x}{2} + {{15}^0}} \right) = 1\;\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 3 }}\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \tan \frac{\pi }{6}\)
\( \Leftrightarrow \frac{x}{2} + \frac{\pi }{{12}} = \frac{\pi }{6} + k\pi \;\;\;\; \Leftrightarrow \frac{x}{2} = \frac{\pi }{{12}} + k\pi \;\;\; \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\;\;\;\; \Leftrightarrow 2x - 1 = \frac{\pi }{5} + k\pi \;\;\;\; \Leftrightarrow 2x = \frac{\pi }{5} + 1 + k\pi \;\; \Leftrightarrow x = \frac{\pi }{{10}} + \frac{1}{2} + \frac{{k\pi }}{2}\;\;\left( {k \in \mathbb{Z}} \right)\)
c.
\(\Leftrightarrow cos\left(x+12^0\right)+cos\left(90^0-78^0+x\right)=1\)
\(\Leftrightarrow2cos\left(x+12^0\right)=1\)
\(\Leftrightarrow cos\left(x+12^0\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+12^0=60^0+k360^0\\x+12^0=-60^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=48^0+k360^0\\x=-72^0+k360^0\end{matrix}\right.\)
2.
Do \(-1\le sin\left(3x-27^0\right)\le1\) nên pt có nghiệm khi:
\(\left\{{}\begin{matrix}2m^2+m\ge-1\\2m^2+m\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m+1\ge0\left(luôn-đúng\right)\\2m^2+m-1\le0\end{matrix}\right.\)
\(\Rightarrow-1\le m\le\dfrac{1}{2}\)
a.
\(\Rightarrow\left[{}\begin{matrix}x+15^0=arccos\left(\dfrac{2}{5}\right)+k360^0\\x+15^0=-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-15^0+arccos\left(\dfrac{2}{5}\right)+k360^0\\x=-15^0-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)
b.
\(2x-10^0=arccot\left(4\right)+k180^0\)
\(\Rightarrow x=5^0+\dfrac{1}{2}arccot\left(4\right)+k90^0\)
Bài 5. a) Vì = tan 300 nên
tan (x - 150) = ⇔ tan (x - 150) = tan 300
⇔ x - 150 = 300 + k1800 ⇔ x = 450 + k1800 , (k ∈ Z).
b) Vì -√3 = cot() nên
cot (3x - 1) = -√3 ⇔ cot (3x - 1) = cot()
⇔ 3x - 1 = + kπ ⇔ x =
c) Đặt t = tan x thì cos2x = , phương trình đã cho trở thành
. t = 0 ⇔ t ∈ {0 ; 1 ; -1} .
Vì vậy phương trình đã cho tương đương với
d) sin 3x . cot x = 0 ⇔ .
Với điều kiện sinx # 0, phương trình tương đương với
sin 3x . cot x = 0 ⇔
Với cos x = 0 ⇔ x = + kπ, k ∈ Z thì sin2x = 1 – cos2x = 1 – 0 = 1 => sinx # 0, điều kiện được thỏa mãn.
Với sin 3x = 0 ⇔ 3x = kπ ⇔ x = , (k ∈ Z). Ta còn phải tìm các k nguyên để x = vi phạm điều kiện (để loại bỏ), tức là phải tìm k nguyên sao cho sin = 0, giải phương trình này (với ẩn k nguyên), ta có
sin = 0 ⇔ = lπ, (l ∈ Z) ⇔ k = 3l ⇔ k : 3.
Do đó phương trình đã cho có nghiệm là x = + kπ, (k ∈ Z) và x = (với k nguyên không chia hết cho 3).
a, \(cos^2x-cosx=0\)
\(\Leftrightarrow cosx\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=0\end{matrix}\right.\)
b, \(2sin2x+\sqrt{2}sin4x=0\)
\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)
\(\Leftrightarrow sin2x\left(1+\sqrt{2}cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}cos2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\cos2x=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\2x=\dfrac{3\pi}{4}+k2\pi\\2x=\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{3\pi}{8}+k\pi\\x=\dfrac{\pi}{8}+k\pi\end{matrix}\right.\)
a, \(cos^2x-cosx=0\)
\(\Leftrightarrow cosx\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\) (k ∈ Z)
Vậy...
b, \(2sin2x+\sqrt{2}sin4x=0\)
\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)
\(\Leftrightarrow2sin2x\left(1+\sqrt{2}cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=\dfrac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\pm\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\pm\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\)
Vậy...
c, \(8cos^2x+2sinx-7=0\)
\(\Leftrightarrow8\left(1-sin^2x\right)+2sinx-7=0\)
\(\Leftrightarrow8sin^2x-2sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)
Vậy...
d, \(4cos^4x+cos^2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=\dfrac{3}{4}\\cos^2x=-1\left(loai\right)\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{cos2x+1}{2}=\dfrac{3}{4}\)
\(\Leftrightarrow cos2x=\dfrac{1}{2}\)
\(\Leftrightarrow2x=\pm\dfrac{\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+k\pi\)
Vậy...
e, \(\sqrt{3}tanx-6cotx+\left(2\sqrt{3}-3\right)=0\) (ĐK: \(x\ne\dfrac{k\pi}{2}\))
\(\Leftrightarrow\sqrt{3}tanx-\dfrac{6}{tanx}+\left(2\sqrt{3}-3\right)=0\)
\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\left(tm\right)\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)
Vậy...
a) Để giải phương trình cot(12x + π/4) = -1, ta áp dụng tính chất của hàm cơ-tang:
cot(12x + π/4) = -1 => 12x + π/4 = π + nπ (với n là số nguyên) => 12x = 3π/4 + nπ - π/4 => 12x = 2π/4 + nπ => 12x = π/2 + nπ => x = (π/2 + nπ)/12 (với n là số nguyên)
b) Để giải phương trình cot(4x) = 1/√3, ta áp dụng tính chất của hàm cơ-tang:
cot(4x) = 1/√3 => 4x = π/6 + nπ (với n là số nguyên) => x = (π/6 + nπ)/4 (với n là số nguyên)
c) Để giải phương trình cot(x + 15 độ) = cot(60 độ), ta áp dụng tính chất của hàm cơ-tang:
cot(x + 15 độ) = cot(60 độ) => x + 15 độ = 60 độ + n180 độ (với n là số nguyên) => x = 45 độ + n180 độ (với n là số nguyên)
d) Để giải phương trình cot(30 độ - 2x) = cot(10 độ), ta áp dụng tính chất của hàm cơ-tang:
cot(30 độ - 2x) = cot(10 độ) => 30 độ - 2x = 10 độ + n180 độ (với n là số nguyên) => -2x = -20 độ + n180 độ => x = 10 độ - n90 độ (với n là số nguyên)
a: cot(1/2x+pi/4)=-1
=>cot(1/2x+pi/4)=cot(-pi/4)
=>1/2x+pi/4=-pi/4+kpi
=>1/2x=-pi/2+kpi
=>x=-pi+k2pi
b: cot 4x=1/căn 3
=>4x=pi/3+kpi
=>x=pi/12+kpi/4
c: cot(x+15 độ)=cot 60 độ
=>x+15 độ=60 độ+k*180 độ
=>x=45 độ+k*180 độ
d: cot(30 độ-2x)=cot 10 độ
=>30 độ-2x=10 độ+k*180 độ
=>2x=20 độ-k*180 độ
=>x=10 độ-k*90 độ
a, Điều kiện xác định: \(\frac{1}{2}x + \frac{\pi }{4} \ne k\pi \Leftrightarrow x \ne - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\)
Ta có: \(cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = - 1 \Leftrightarrow cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = \cot \left( { - \frac{\pi }{4}} \right)\)
\( \Leftrightarrow \frac{1}{2}x + \frac{\pi }{4} = - \frac{\pi }{4} + k\pi \Leftrightarrow x = - \pi + k2\pi ,k \in \mathbb{Z}\,\,(TM).\)
Vậy \(x = - \pi + k2\pi ,k \in \mathbb{Z}\,\).
b, Điều kiện xác định: \(3x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{3},k \in \mathbb{Z}.\)
\(\;cot3x = - \frac{{\sqrt 3 }}{3} \Leftrightarrow cot3x = \cot \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow 3x = - \frac{\pi }{3} + k\pi \Leftrightarrow x = - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\,(TM).\)
Vậy \(x = - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\).
a) \(\cot x = 1\; \Leftrightarrow \cot x = \cot \frac{\pi }{4}\;\;\; \Leftrightarrow x = \frac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
b) \(\sqrt 3 \cot x + 1 = 0\;\;\; \Leftrightarrow \sqrt 3 \cot x = - 1\; \Leftrightarrow \cot x = - \frac{{\sqrt 3 }}{3}\;\; \Leftrightarrow \cot x = \cot \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow x = - \frac{\pi }{3} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)