K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2020

PT <=> \(\left(\frac{x+2}{50}+2\right)+\left(\frac{x+4}{49}+2\right)=\left(\frac{x+6}{48}+2\right)+\left(\frac{x+8}{47}+2\right)\)

<=> \(\frac{x+102}{50}+\frac{x+102}{49}=\frac{x+102}{48}+\frac{x+102}{47}\)

<=> \(\left(x+102\right)\left(\frac{1}{50}+\frac{1}{49}-\frac{1}{48}-\frac{1}{47}\right)=0\)

\(\frac{1}{50}+\frac{1}{49}-\frac{1}{48}-\frac{1}{47}\ne0\)

<=> x + 102 = 0

<=> x = -102

30 tháng 5 2020

oki cảm ơn bạn nhó <3

9 tháng 2 2021

Ta có : \(\dfrac{x-50}{50}+\dfrac{x-51}{49}+\dfrac{x-52}{49}+\dfrac{x-53}{47}+\dfrac{x-200}{25}=0\)

\(\Leftrightarrow\dfrac{x-50}{50}-1+\dfrac{x-51}{49}-1+\dfrac{x-52}{49}-1+\dfrac{x-53}{47}-1+\dfrac{x-200}{25}+4=0\)

\(\Leftrightarrow\dfrac{x-100}{50}+\dfrac{x-100}{49}+\dfrac{x-100}{49}+\dfrac{x-100}{47}+\dfrac{x-100}{25}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)

<=> x - 100 = 0

<=> x = 100

Vậy ..

 

 

 

Ta có: \(\dfrac{x-50}{50}+\dfrac{x-51}{49}+\dfrac{x-52}{48}+\dfrac{x-53}{47}+\dfrac{x-200}{25}=0\)

\(\Leftrightarrow\dfrac{x-50}{50}-1+\dfrac{x-51}{49}-1+\dfrac{x-52}{48}-1+\dfrac{x-53}{47}-1+\dfrac{x-200}{25}+4=0\)

\(\Leftrightarrow\dfrac{x-100}{50}+\dfrac{x-100}{49}+\dfrac{x-100}{48}+\dfrac{x-100}{47}+\dfrac{x-100}{25}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)

mà \(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}>0\)

nên x-100=0

hay x=100

Vậy: S={100}

10 tháng 2 2018

10)   \(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)

\(\Leftrightarrow\)\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)

\(\Leftrightarrow\)\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)

\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\)\(x+100=0\)   (vì  1/86 + 1/85 + 1/84 + 1/83 + 1/4  \(\ne\)0)

\(\Leftrightarrow\)\(x=-100\)

Vậy....

5 tháng 2 2018

7)    \(\frac{x+25}{75}+\frac{x+30}{70}=\frac{x+35}{65}+\frac{x+40}{60}\)

\(\Leftrightarrow\)\(\frac{x+25}{75}+1+\frac{x+30}{70}+1=\frac{x+36}{65}+1+\frac{x+40}{60}+1\)

\(\Leftrightarrow\)\(\frac{x+100}{75}+\frac{x+100}{70}=\frac{x+100}{65}+\frac{x+100}{60}\)

\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60}\right)=0\)

\(\Leftrightarrow\)\(x+100=0\)            (vì 1/75 + 1/70 - 1/65 - 1/60  \(\ne\)0)

\(\Leftrightarrow\)\(x=-100\)

Vậy.....

7 tháng 2 2018

7)    \(\frac{x+25}{75}+\frac{x+30}{70}=\frac{x+35}{65}+\frac{x+40}{60}\)

\(\Leftrightarrow\)\(\frac{x+25}{75}+1+\frac{x+30}{70}+1=\frac{x+35}{65}+1+\frac{x+40}{60}+1\)

\(\Leftrightarrow\)\(\frac{x+100}{75}+\frac{x+100}{70}=\frac{x+100}{65}+\frac{x+100}{60}\)

\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60}\right)=0\)

\(\Leftrightarrow\)\(x+100=0\)    (1/75 + 1/70 - 1/65 - 1/60 \(\ne\)0)

\(\Leftrightarrow\)\(x=-100\)

Vậy...

26 tháng 3 2020

Ta có : \(\frac{x}{50}+\frac{x-1}{49}+\frac{x-2}{48}+\frac{x-3}{47}+\frac{x-150}{25}=0\)

=> \(\frac{x}{50}-1+\frac{x-1}{49}-1+\frac{x-2}{48}-1+\frac{x-3}{47}-1+\frac{x-150}{25}+4=0\)

=> \(\frac{x-50}{50}+\frac{x-50}{49}+\frac{x-50}{48}+\frac{x-50}{47}+\frac{x-50}{25}=0\)

=> \(\left(x-50\right)\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{25}\right)=0\)

=> \(x-50=0\)

=> \(x=50\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{50\right\}\)

24 tháng 3 2020

a) 7x - 35 = 0

<=> 7x = 0 + 35

<=> 7x = 35

<=> x = 5

b) 4x - x - 18 = 0

<=> 3x - 18 = 0

<=> 3x = 0 + 18

<=> 3x = 18

<=> x = 5

c) x - 6 = 8 - x

<=> x - 6 + x = 8

<=> 2x - 6 = 8

<=> 2x = 8 + 6

<=> 2x = 14

<=> x = 7

d) 48 - 5x = 39 - 2x

<=> 48 - 5x + 2x = 39

<=> 48 - 3x = 39

<=> -3x = 39 - 48

<=> -3x = -9

<=> x = 3

19 tháng 5 2021

có bị viết nhầm thì thông cảm nha!

13 tháng 1 2018

Giải phương trình sau:

\(\dfrac{x}{50}\) +\(\dfrac{x_{ }-1}{49}\)+\(\dfrac{x-2}{48}\)+\(\dfrac{x-3}{47}\)+\(\dfrac{x-150}{25}\)= 0

\(\dfrac{\left(x-50\right)+50}{50}\)+\(\dfrac{\left(x-50\right)+49}{49}\)+\(\dfrac{\left(x-50\right)+48}{48}\)+\(\dfrac{\left(x-50\right)-100}{25}\)= 0

\(\dfrac{x-50}{50}\)+ 1 + \(\dfrac{x-50}{49}\)+1+\(\dfrac{x-50}{48}\)+1+\(\dfrac{x-50}{47}\)+1+\(\dfrac{x-50}{25}\)-4 = 0

\(\dfrac{x-50}{50}\)+\(\dfrac{x-50}{49}\)+\(\dfrac{x-50}{48}\)+\(\dfrac{x-50}{47}\)+\(\dfrac{x-50}{25}\)= 0

⇔ (x - 50 ) ( \(\dfrac{1}{50}\)+ \(\dfrac{1}{49}\)+\(\dfrac{1}{48}\)+\(\dfrac{1}{47}\)+\(\dfrac{1}{25}\)) = 0

⇔ x-50 =\(\dfrac{0}{\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}}\)

⇔ x- 50 = 0

⇔ x = 50

vậy S = \(\left\{50\right\}\)

10 tháng 3 2020

\(ĐKXĐ:x\ne49;x\ne50\)

Đặt \(x-49=u;x-50=v\)

Phương trình trở thành \(\frac{50}{u}+\frac{49}{v}=\frac{u}{50}+\frac{v}{49}\)

\(\Rightarrow\frac{50v+49u}{uv}=\frac{49u+50v}{2450}\)

\(\Rightarrow\orbr{\begin{cases}50v+49u=0\\uv=2450\end{cases}}\)

+) \(50v+49u=0\)

\(\Rightarrow50v=-49u\)

\(\Rightarrow\frac{v}{-49}=\frac{u}{50}=\frac{\left(x-50\right)-\left(x-49\right)}{-49-50}\)

\(=\frac{-1}{-99}=\frac{1}{99}\)

\(\Rightarrow\hept{\begin{cases}v=\frac{-49}{99}\\u=\frac{50}{99}\end{cases}}\Rightarrow x=\frac{4901}{99}\)(tm)

+) \(uv=2450\)

hay \(\left(x-49\right)\left(x-50\right)=2450\)

\(\Leftrightarrow x^2-99x+2450=2450\)

\(\Leftrightarrow x^2-99x=0\Leftrightarrow x\left(x-99\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=99\end{cases}}\left(tm\right)\)

Vậy phương trình có 3 nghiệm \(S=\left\{0;\frac{4901}{99};99\right\}\)

19 tháng 3 2020

ok cảm ơn bn

28 tháng 4 2023

\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)

\(\Leftrightarrow\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)

\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)+\left(\dfrac{1}{x+2}-\dfrac{1}{x+4}\right)+\left(\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)+\left(\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=\dfrac{8}{105}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{8}{105}\)

\(\Leftrightarrow x\left(x+8\right)=105\)

\(\Leftrightarrow x^2+8x-105=0\)

\(\Leftrightarrow x^2-7x+15x-105=0\)

\(\Leftrightarrow x\left(x-7\right)+15\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)

Thử lại ta có nghiệm của phương trình trên là \(x=7\text{v}à\text{x}=15\)