Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: \(B=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
c: \(C=\dfrac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\dfrac{3x+4}{x}\)
d: \(D=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}=\dfrac{x+2}{2}\)
e: \(E=\dfrac{-x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{-x}{x+2}\)
f: \(F=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)
a, pt <=> (x^4-4x+4)+(x^2+6x+9) = 0
<=> (x^2-2)^2+(x+3)^2=0
<=> x^2-2=0 và x+3=0
=> pt vô nghiệm
b, pt <=> (x-1).(x^6+x^5+x^4+x^3+x^2+x+1) = 0
<=> x^7+x^6+x^5+x^4+x^3+x^2+x-x^6-x^5-x^4-x^3-x^2-x-1 = 0
<=> x^7-1=0
<=> x^7=1 = 1^7
=> x=1
Tk mk nha
Bài 1 :
a) \(\left(x-4\right)\left(x+4\right)=x^2-16\)
b) \(\left(x-5\right)\left(x+5\right)=x^2-25\)
Bài 2 :
a) \(x^2-2x+1=\left(x-1\right)^2\)
b) \(x^2+2x+1=\left(x+1\right)^2\)
c) \(x^2-6x+9=\left(x-3\right)^2\)
1) a. (x - 4)(x + 4) = x2 - 4x + 4x - 16 = x2 - 16
b. (x - 5)(x + 5) = x2 - 5x + 5x - 25 = x2 - 25
2. x2 - 2x + 1 = x2 - x - x + 1 = x(x - 1) - (x - 1) = (x - 1)2
(x2 + 2x + 1) = x2 + x + x + 1 = x(x + 1) + (x + 1) = (x + 1)2
x2 - 6x + 9 = x2 - 3x - 3x + 9 = x(x - 3) -3(x - 3) = (x - 3)2
a: \(\Leftrightarrow x^2+6x+9=0\)
\(\Leftrightarrow\left(x+3\right)^2=0\)
=>x+3=0
hay x=-3
b: \(\Leftrightarrow x^2+x-12-6x+4=x^2-8x+16\)
=>-7x+8=-8x+16
=>x=8