Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(-ĐKXĐ:\hept{\begin{cases}x-14\ne0;x-13\ne0\\x-9\ne0\\x-11\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne14;x\ne13\\x\ne9\\x\ne11\end{cases}}\)
- Ta có : \(\frac{2}{x-14}-\frac{5}{x-13}=\frac{2}{x-9}-\frac{5}{x-11}\)
\(\Leftrightarrow\frac{2}{x-14}-\frac{5}{x-13}-\frac{2}{x-9}+\frac{5}{x-11}=0\)
\(\Leftrightarrow\left(\frac{2}{x-14}-\frac{2}{x-9}\right)-\left(\frac{5}{x-13}-\frac{5}{x-11}\right)=0\)
\(\Leftrightarrow2\left(\frac{1}{x-14}-\frac{1}{x-9}\right)-5\left(\frac{1}{x-13}-\frac{1}{x-11}\right)=0\)\(\Leftrightarrow2.\frac{\left(x-9\right)-\left(x-14\right)}{\left(x-9\right)\left(x-14\right)}-5.\frac{\left(x-11\right)-\left(x-13\right)}{\left(x-11\right)\left(x-13\right)}=0\)
\(\Leftrightarrow2.\frac{5}{\left(x-9\right)\left(x-14\right)}-5.\frac{2}{\left(x-11\right)\left(x-13\right)}=0\)
\(\Leftrightarrow\frac{10}{\left(x-9\right)\left(x-14\right)}-\frac{10}{\left(x-11\right)\left(x-13\right)}=0\)
\(\Leftrightarrow10\left[\frac{1}{\left(x-9\right)\left(x-14\right)}-\frac{1}{\left(x-11\right)\left(x-13\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(x-11\right)\left(x-13\right)}{\left(x-9\right)\left(x-14\right)\left(x-11\right)\left(x-13\right)}-\frac{\left(x-9\right)\left(x-14\right)}{\left(x-9\right)\left(x-14\right)\left(x-11\right)\left(x-13\right)}=\) \(0\)
\(\Leftrightarrow\left(x-11\right)\left(x-13\right)-\left(x-9\right)\left(x-14\right)=0\)
\(\Leftrightarrow x^2-24x+143-x^2+23x-126=0\)
\(\Leftrightarrow-x+17=0\Leftrightarrow-x=-17\Leftrightarrow x=17\)
Vậy pt có tập nghiệm S = { 17 }
P/s: Mk làm hơi lòng vòng, bn thông cảm nhé !
a) ĐKXĐ: \(x\notin\pm\frac{1}{3}\)
Ta có: \(\frac{12x+1}{6x-2}-\frac{9x-5}{3x+1}=\frac{108x-36x^2-9}{4\left(9x^2-1\right)}\)
\(\Leftrightarrow\frac{12x+1}{2\left(3x-1\right)}-\frac{9x-5}{3x+1}=\frac{9\left(12x-4x^2-1\right)}{4\left(9x^2-1\right)}\)
\(\Leftrightarrow\frac{2\left(12x+1\right)\left(3x+1\right)}{4\left(3x-1\right)\left(3x+1\right)}-\frac{4\left(9x-5\right)\left(3x-1\right)}{4\left(3x+1\right)\left(3x-1\right)}=\frac{9\left(12x-4x^2-1\right)}{4\left(3x+1\right)\left(3x-1\right)}\)
\(\Leftrightarrow72x^2+30x+2-\left(108x^2-96x+20\right)=108x-36x^2-9\)
\(\Leftrightarrow72x^2+30x+2-108x^2+96x-20-108x+36x^2+9=0\)
\(\Leftrightarrow18x-9=0\)
\(\Leftrightarrow9\left(2x-1\right)=0\)
mà 9≠0
nên 2x-1=0
⇔2x=1
hay \(x=\frac{1}{2}\)(tm)
Vậy: \(x=\frac{1}{2}\)
b)ĐKXĐ: x≠0
Ta có: \(x+\frac{1}{x}=x^2+\frac{1}{x^2}\)
\(\Leftrightarrow x+\frac{1}{x}-x^2-\frac{1}{x^2}=0\)
\(\Leftrightarrow\frac{x^3}{x^2}+\frac{x}{x^2}-\frac{x^4}{x^2}-\frac{1}{x^2}=0\)
\(\Leftrightarrow x^3+x-x^4-1=0\)
\(\Leftrightarrow x^3\left(1-x\right)+\left(x-1\right)=0\)
\(\Leftrightarrow x^3\left(1-x\right)-\left(1-x\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(x^3-1\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(x-1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow-\left(x-1\right)^2\cdot\left(x^2+x+1\right)=0\)(1)
Ta có: \(x^2+x+1=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)(2)
Từ (1) và (2) suy ra x-1=0
hay x=1(tm)
Vậy: x=1
c) ĐKXĐ: x≠0
Ta có: \(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+2\right)\)
\(\Leftrightarrow\frac{1}{x}+2-\left(\frac{1}{x}+2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+2\right)\left(2-x^2-2\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+2\right)\cdot\left(-x^2\right)=0\)(3)
Ta có: 1≠0
x≠0
Do đó: \(\frac{1}{x}\ne0\)
\(\Leftrightarrow\frac{1}{x}+2\ne0\)(4)
Từ (3) và (4) suy ra x=0(ktm)
Vậy: x∈∅
d) ĐKXĐ: x≠0
Ta có: \(\left(x+1+\frac{1}{x}\right)^2=\left(x-1-\frac{1}{x}\right)^2\)
\(\Leftrightarrow\left(x+1+\frac{1}{x}\right)^2-\left(x-1-\frac{1}{x}\right)^2=0\)
\(\Leftrightarrow\left(x+1+\frac{1}{x}+x-1-\frac{1}{x}\right)\left(x+1+\frac{1}{x}-x+1+\frac{1}{x}\right)=0\)
\(\Leftrightarrow2x\cdot\left(2+\frac{2}{x}\right)=0\)
\(\Leftrightarrow4x\left(1+\frac{1}{x}\right)=0\)
mà 4≠0
và x≠0
nên \(1+\frac{1}{x}=0\)
\(\Leftrightarrow\frac{1}{x}=-1\)
hay x=-1(tm)
Vậy: x=-1