Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7) \(\frac{x+25}{75}+\frac{x+30}{70}=\frac{x+35}{65}+\frac{x+40}{60}\)
\(\Leftrightarrow\)\(\frac{x+25}{75}+1+\frac{x+30}{70}+1=\frac{x+36}{65}+1+\frac{x+40}{60}+1\)
\(\Leftrightarrow\)\(\frac{x+100}{75}+\frac{x+100}{70}=\frac{x+100}{65}+\frac{x+100}{60}\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\) (vì 1/75 + 1/70 - 1/65 - 1/60 \(\ne\)0)
\(\Leftrightarrow\)\(x=-100\)
Vậy.....
7) \(\frac{x+25}{75}+\frac{x+30}{70}=\frac{x+35}{65}+\frac{x+40}{60}\)
\(\Leftrightarrow\)\(\frac{x+25}{75}+1+\frac{x+30}{70}+1=\frac{x+35}{65}+1+\frac{x+40}{60}+1\)
\(\Leftrightarrow\)\(\frac{x+100}{75}+\frac{x+100}{70}=\frac{x+100}{65}+\frac{x+100}{60}\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\) (1/75 + 1/70 - 1/65 - 1/60 \(\ne\)0)
\(\Leftrightarrow\)\(x=-100\)
Vậy...
10) \(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)
\(\Leftrightarrow\)\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow\)\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\) (vì 1/86 + 1/85 + 1/84 + 1/83 + 1/4 \(\ne\)0)
\(\Leftrightarrow\)\(x=-100\)
Vậy....
a) \(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)
\(\Leftrightarrow\)\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow\)\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\)
\(\Leftrightarrow\)\(x=-100\)
Vậy...
b)\(\dfrac{x+14}{86}+\dfrac{x+15}{85}+\dfrac{x+16}{84}+\dfrac{x+17}{83}+\dfrac{x+116}{4}=0\)
\(\Leftrightarrow\dfrac{x+14}{86}+1+\dfrac{x+15}{85}+1+\dfrac{x+16}{84}+1+\dfrac{x+17}{83}+1+\dfrac{x+116}{4}-4=0\)
\(\Leftrightarrow\dfrac{x+100}{86}+\dfrac{x+100}{85}+\dfrac{x+100}{84}+\dfrac{x+100}{83}+\dfrac{x+100}{4}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{86}+\dfrac{1}{85}+\dfrac{1}{84}+\dfrac{1}{83}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x+100=0\).Do \(\dfrac{1}{86}+\dfrac{1}{85}+\dfrac{1}{84}+\dfrac{1}{83}+\dfrac{1}{4}\ne0\)
\(\Leftrightarrow x=-100\)
c)\(\dfrac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\dfrac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\dfrac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{\left(x^2+1\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+3\right)}+...+\dfrac{1}{\left(x^2+4\right)\left(x^2+5\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{x^2+1}-\dfrac{1}{x^2+2}+\dfrac{1}{x^2+2}-\dfrac{1}{x^2+3}+...+\dfrac{1}{x^2+4}-\dfrac{1}{x^2+5}=-1\)
\(\Leftrightarrow\dfrac{1}{x^2+1}-\dfrac{1}{x^2+5}=-1\)\(\Leftrightarrow\dfrac{4}{x^4+6x^2+5}=-1\)
\(\Leftrightarrow\dfrac{x^4+6x^2+9}{x^4+6x^2+5}=0\Leftrightarrow x^4+6x^2+9=0\)
\(\Leftrightarrow\left(x^2+3\right)^2>0\forall x\) (vô nghiệm)
Bài 1:
\(\frac{99-x}{101}+\frac{97-x}{103}+\frac{95-x}{105}+\frac{93-x}{107}=-4\)
\(\Leftrightarrow \frac{99-x}{101}+1+\frac{97-x}{103}+1+\frac{95-x}{105}+1+\frac{93-x}{107}+1=0\)
\(\Leftrightarrow \frac{99-x+101}{101}+\frac{97-x+103}{103}+\frac{95-x+105}{105}+\frac{93-x+107}{107}=0\)
\(\Leftrightarrow \frac{200-x}{101}+\frac{200-x}{103}+\frac{200-x}{105}+\frac{200-x}{107}=0\)
\(\Leftrightarrow (200-x)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\neq 0\) nên suy ra \(200-x=0\Rightarrow x=200\)
Bài 2:
\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+116}{4}=0\)
\(\Leftrightarrow \frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow \frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow (x+100)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
Vì \(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\neq 0\). Do đó \(x+100=0\Rightarrow x=-100\)
\(ĐKXĐ:x\ne49;x\ne50\)
Đặt \(x-49=u;x-50=v\)
Phương trình trở thành \(\frac{50}{u}+\frac{49}{v}=\frac{u}{50}+\frac{v}{49}\)
\(\Rightarrow\frac{50v+49u}{uv}=\frac{49u+50v}{2450}\)
\(\Rightarrow\orbr{\begin{cases}50v+49u=0\\uv=2450\end{cases}}\)
+) \(50v+49u=0\)
\(\Rightarrow50v=-49u\)
\(\Rightarrow\frac{v}{-49}=\frac{u}{50}=\frac{\left(x-50\right)-\left(x-49\right)}{-49-50}\)
\(=\frac{-1}{-99}=\frac{1}{99}\)
\(\Rightarrow\hept{\begin{cases}v=\frac{-49}{99}\\u=\frac{50}{99}\end{cases}}\Rightarrow x=\frac{4901}{99}\)(tm)
+) \(uv=2450\)
hay \(\left(x-49\right)\left(x-50\right)=2450\)
\(\Leftrightarrow x^2-99x+2450=2450\)
\(\Leftrightarrow x^2-99x=0\Leftrightarrow x\left(x-99\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=99\end{cases}}\left(tm\right)\)
Vậy phương trình có 3 nghiệm \(S=\left\{0;\frac{4901}{99};99\right\}\)
Ta có : \(\dfrac{x-50}{50}+\dfrac{x-51}{49}+\dfrac{x-52}{49}+\dfrac{x-53}{47}+\dfrac{x-200}{25}=0\)
\(\Leftrightarrow\dfrac{x-50}{50}-1+\dfrac{x-51}{49}-1+\dfrac{x-52}{49}-1+\dfrac{x-53}{47}-1+\dfrac{x-200}{25}+4=0\)
\(\Leftrightarrow\dfrac{x-100}{50}+\dfrac{x-100}{49}+\dfrac{x-100}{49}+\dfrac{x-100}{47}+\dfrac{x-100}{25}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)
<=> x - 100 = 0
<=> x = 100
Vậy ..
Ta có: \(\dfrac{x-50}{50}+\dfrac{x-51}{49}+\dfrac{x-52}{48}+\dfrac{x-53}{47}+\dfrac{x-200}{25}=0\)
\(\Leftrightarrow\dfrac{x-50}{50}-1+\dfrac{x-51}{49}-1+\dfrac{x-52}{48}-1+\dfrac{x-53}{47}-1+\dfrac{x-200}{25}+4=0\)
\(\Leftrightarrow\dfrac{x-100}{50}+\dfrac{x-100}{49}+\dfrac{x-100}{48}+\dfrac{x-100}{47}+\dfrac{x-100}{25}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)
mà \(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}>0\)
nên x-100=0
hay x=100
Vậy: S={100}
9: \(\dfrac{x-49}{50}+\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
=>x-99=0
hay x=99
7: \(\Leftrightarrow\left(\dfrac{x+25}{75}+1\right)+\left(\dfrac{x+30}{70}+1\right)=\left(\dfrac{x+35}{65}+1\right)+\left(\dfrac{x+40}{60}+1\right)\)
=>x+100=0
hay x=-100
8:
Sửa đề: \(\dfrac{99-x}{101}+\dfrac{97-x}{103}+\dfrac{95-x}{105}+\dfrac{93-x}{107}=-4\)
\(\Leftrightarrow\left(\dfrac{99-x}{101}+1\right)+\left(\dfrac{97-x}{103}+1\right)+\left(\dfrac{95-x}{105}+1\right)+\left(\dfrac{93-x}{107}+1\right)=0\)
=>200-x=0
hay x=200