Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = 2 x (t > 0), ta có phương trình:
− t 3 + 2 t 2 + t – 2 = 0
⇔ (t − 1)(t + 1)(2 − t) = 0
Do đó:
Chia hai vế cho 12 x ( 12 x > 0), ta được:
4 3 / 4 x + 1 − 3 4 / 3 x = 0
Đặt t = 3 / 4 x (t > 0), ta có phương trình:
4t + 1 − 3/t = 0 ⇔ 4 t 2 + t − 3 = 0
Do đó, 3 / 4 x = 3 / 4 1 . Vậy x = 1.
a) Bất phương trình đã cho tương đương với hệ sau:
Vậy tập nghiệm là (−1;0) ∪ (7/2; + ∞ )
b) Tương tự câu a), tập nghiệm là (1/10; 5)
c) Đặt t = log 2 x , ta có bất phương trình 2 t 3 + 5 t 2 + t – 2 ≥ 0 hay (t + 2)(2 t 2 + t − 1) ≥ 0 có nghiệm −2 ≤ t ≤ −1 hoặc t ≥ 1/2
Suy ra 1/4 ≤ x ≤ 1/2 hoặc x ≥ 2
Vậy tập nghiệm của bất phương trình đã cho là: [1/4; 1/2] ∪ [ 2 ; + ∞ )
d) Bất phương trình đã cho tương đương với hệ:
Vậy tập nghiệm là (ln(2/3); 0] ∪ [ln2; + ∞ )
\(\Leftrightarrow3^{x^2}.4^{x+1}=3^{-x}\)
Lấy logarit cơ số 3 hai vế:
\(\Rightarrow log_3\left(3^{x^2}.4^{x+1}\right)=log_3\left(3^{-x}\right)\)
\(\Leftrightarrow x^2+\left(x+1\right)log_34=-x\)
\(\Leftrightarrow x^2+x+\left(x+1\right)log_34=0\)
\(\Leftrightarrow x\left(x+1\right)+\left(x+1\right)log_34=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+log_34\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-log_34=-2log_32\end{matrix}\right.\)