K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(a.\left(\sqrt{x}-7\right)\left(\sqrt{x}-8\right)=x+11\left(x\ge0\right)\)

\(\Leftrightarrow x-15\sqrt{x}+56=x+11\)

\(\Leftrightarrow15\sqrt{x}=45\)

\(\Leftrightarrow x=9\left(TM\right)\)

\(b.\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)=x-17\left(x\ge0\right)\)

\(\Leftrightarrow x-2\sqrt{x}-15=x-17\)

\(\Leftrightarrow2\sqrt{x}=2\)

\(x=1\left(TM\right)\)

\(c.1-\dfrac{2\sqrt{x}-5}{6}=\dfrac{3-\sqrt{x}}{4}\left(x\ge0\right)\)

\(\Leftrightarrow\dfrac{2\left(2\sqrt{x}-5\right)+3\left(3-\sqrt{x}\right)}{12}=1\)

\(\Leftrightarrow x=169\left(TM\right)\)

\(d.\left(\sqrt{x}+3\right)^2-x+3=0\left(x\ge0\right)\)

\(\Leftrightarrow6\sqrt{x}=-12\left(vô-lý\right)\)

KL...............

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

6:ĐKXĐ: x>=0; x<>1/25

BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)

=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)

=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)

7:

ĐKXĐ: x>=0

BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)

=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)

=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)

=>\(-\sqrt{x}-2>=0\)(vô lý)

8:

ĐKXĐ: x>=0; x<>9/4

BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)

=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)

=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)

TH1: 9căn x-14>0 và 2căn x-3<0

=>căn x>14/9 và căn x<3/2

=>14/9<căn x<3/2

=>196/81<x<9/4

TH2: 9căn x-14<0 và 2căn x-3>0

=>căn x>3/2 hoặc căn x<14/9

mà 3/2<14/9

nên trường hợp này Loại

9: 

ĐKXĐ: x>=0

\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)

=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)

=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)

=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)

10: 

ĐKXĐ: x>=0; x<>1/49

\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)

=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)

=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)

=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)

TH1: 6căn x-1>0 và 7căn x-1>0

=>căn x>1/6 và căn x>1/7

=>căn x>1/6

=>x>1/36

TH2: 6căn x-1<0 và 7căn x-1<0

=>căn x<1/6 và căn x<1/7

=>căn x<1/7

=>0<=x<1/49

30 tháng 8 2023

câu 9 nhầm đề bài r bạn

 

Bài 1:

\(\sqrt{\left(4-\sqrt{5}\right)^2}+\sqrt{5+2\sqrt{5}+1}\)

\(=\left|4-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=4-\sqrt{5}+\sqrt{5}+1=5\)

Bài 2:

a: ĐKXĐ: x>=3

\(\sqrt{x-3}=6\)

=>x-3=36

=>x=36+3=39(nhận)

b: ĐKXĐ: \(x\in R\)

\(\sqrt{\left(x-3\right)^2}=12\)

=>\(\left|x-3\right|=12\)

=>\(\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)

Bài 3:

a: \(P=\left(\dfrac{3-x\sqrt{x}}{3-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\dfrac{3-\sqrt{x}}{3-x}\right)\)

\(=\dfrac{3-x\sqrt{x}+\sqrt{x}\left(3-\sqrt{x}\right)}{3-\sqrt{x}}\cdot\dfrac{3-\sqrt{x}}{3-x}\)

\(=\dfrac{3-x\sqrt{x}+3\sqrt{x}-x}{3-x}\)

\(=\dfrac{-\sqrt{x}\left(x-3\right)-\left(x-3\right)}{-\left(x-3\right)}=\dfrac{\left(x-3\right)\left(\sqrt{x}+1\right)}{x-3}=\sqrt{x}+1\)

b: \(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right):\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

c: \(A=\sqrt{3x-1}+3\cdot\sqrt{12x-4}-\sqrt{6^2\left(3x-1\right)}+\sqrt{5}\)

\(=\sqrt{3x-1}+6\sqrt{3x-1}-6\sqrt{3x-1}+\sqrt{5}\)

\(=\sqrt{3x-1}+\sqrt{5}\)

d: \(A=\left(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\)

\(=\left(\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{2\left(a-2\right)}{a+2}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

8 tháng 7 2023

\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)

\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)

\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)

\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)