Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
Từ pt 1, rút x=3y+3 ra rồi thay vào pt dưới
giải pt bậc 2 là ra nghiệm, từ đó thay vào tính M
????????
cho hệ phương trình
các anh các chị nói gì nhợ
thêm lãi ý hả
trời nhưng chưa kinh bằng em đâu
\(\left(x-y\right)^2+2\cdot\frac{3}{2}\left(x-y\right)+\frac{9}{4}=4+\frac{9}{4}=\frac{25}{4}\)
\(\Rightarrow\left(x-y+\frac{3}{2}\right)^2=\frac{25}{4}\Rightarrow x-y+\frac{3}{2}=\frac{5}{2}\Rightarrow x-y=1\Rightarrow x=y+1\)
\(2x+3y=2\left(y+1\right)+3y=2y+2+3y=5y+2=12\Rightarrow5y=10\Rightarrow y=2\)
\(\Rightarrow x=y+1=2+1=3\)
vây x=23;y=2
Ta có : \(\hept{\begin{cases}\left(x-y\right)^2+3\left(x-y\right)=4\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2+3\left(x-y\right)+\frac{9}{4}=4+\frac{9}{4}\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y+\frac{3}{2}\right)^2=\frac{25}{4}\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+\frac{3}{2}=\frac{5}{2}\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y=\frac{5}{2}-\frac{3}{2}\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y=1\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-2y=2\\2x+3y=12\end{cases}}\)
<=> 2x - 2y - 2x - 3y = 2 - 12
<=> -5y = -10
<=> y = 2
=> 2x + 3.2 = 12
<=> 2.x + 6 = 12
<=> 2x = 6
<=> x = 3 .
+Nếu x = 0 thì \(pt\text{ (1) trở thành: }0=1\text{ (vô lí)}\)
+Xét \(x\ne0\)
\(pt\text{ (1)}\Leftrightarrow y=\frac{x^2-1}{x},\text{ thay vào }pt\text{ (2), ta được:}\)
\(\left(\frac{x^2-1}{x}\right)^2-3.\frac{x^2-1}{x}+6x=0\)
\(\Leftrightarrow\left(x^2-1\right)^2-3x\left(x^2-1\right)+6x^3=0\)
\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-2+\sqrt{3}\text{ hoặc }x=-2-\sqrt{3}\)
\(+x=-2+\sqrt{3}\text{ thì }y=2\sqrt{3}\)
\(+x=-2-\sqrt{3}\text{ thì }y=-2\sqrt{3}\)
Kết luận: \(\left(x;y\right)=\left(-2+\sqrt{3};2\sqrt{3}\right);\left(-2-\sqrt{3};-2\sqrt{3}\right)\)
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
\(x^3-16x=y\left(y^2-4\right)\) \(\left(1\right)\)
\(5x^2=y^2-4\) \(\left(2\right)\)
\(\Rightarrow x^3-16x=y.5x^2\Leftrightarrow x\left(x^2-5yx-16\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-5yx-16=0\)
+ \(x=0\Rightarrow y^2-4=5.0=0\Rightarrow y=2\) hoặc \(y=-2\)
Thế lại vào \(\left(1\right)\) thấy thỏa, ta được 2 nghiệm \(\left(x,y\right)=\left(0;2\right),\left(0;-2\right)\)
+\(x^2-5yx-16=0\) và \(x\ne0\)
\(\Rightarrow y=\frac{x^2-16}{5x}=\frac{x}{5}-\frac{16}{5x}\)
Thế y vào \(\left(2\right)\) ta được
\(5x^2=\left(\frac{x}{5}-\frac{16}{5x}\right)^2-4\Leftrightarrow125x^2=\left(x-\frac{16}{x}\right)^2-100\Leftrightarrow125x^2=x^2+\frac{256}{x^2}-32-100\)
\(\Leftrightarrow124x^2+132-\frac{256}{x^2}=0\)\(\Leftrightarrow124x^4+132x^2-256=0\)
\(\Leftrightarrow4\left(x^2-1\right)\left(31x^2+64\right)=0\)\(\Leftrightarrow x^2=1\Leftrightarrow x=1\) hoặc \(x=-1\)
\(x=1\Rightarrow y=\frac{1}{5}-\frac{16}{1.5}=-3\)
\(x=-1\Rightarrow y=\frac{1}{-5}-\frac{16}{-5}=3\)
Thử các cặp \(\left(x,y\right)=\left(1;-3\right),\left(-1;3\right)\) vào hệ thấy thỏa mãn.
Vậy: hệ có 4 nghiệm \(\left(x,y\right)=\left(0;2\right),\left(0;-2\right);\left(1;-3\right);\left(-1;3\right)\)
1/ đặt x+y = a
xy=b
Ta có a(a2 - 3b) = 19
a(8+b)=2
Dùng phương pháp thế rồi giải tìm được a=1; b=-6
Từ đó ta suy ra x=-2 và y=3 hoặc x=3 và y =-2
2/ ta có 3x2 +4 xy + y2 = 0 <=> (2x+y)2 - x2 = 0 <=> (3x+y)(x+y)=0 từ đó dùng phương pháp thế vào phương trình còn lại là ra
\(\left\{{}\begin{matrix}2\left(x+y\right)^2-3\left(x+y\right)-9=0\\x-y=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+y=3\\x+y=-\frac{3}{2}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=3\\x-y=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=-\frac{3}{2}\\x-y=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{7}{4}\\y=-\frac{13}{4}\end{matrix}\right.\)
Câu 2:
\(\left\{{}\begin{matrix}5\left(x-y\right)^2+3\left(x-y\right)-8=0\\2x+3y=12\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x-y=1\\x-y=-\frac{8}{5}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y=1\\2x+3y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Th2: \(\left\{{}\begin{matrix}x-y=-\frac{8}{5}\\2x+3y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{36}{25}\\y=\frac{76}{25}\end{matrix}\right.\)