Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{1+x^2}-5^{1-x^2}>24\Leftrightarrow5\times5^{x^2}-\frac{5}{5^{x^2}}>24\) (1)
Đặt \(t=5^{x^2}\), dk: \(t>0\)
\(\left(1\right)\Leftrightarrow5t-\frac{5}{t}>24\Leftrightarrow5t^2-24t-5>0\Leftrightarrow\left[\begin{array}{nghiempt}t< \frac{-1}{5}\left(loai\right)\\t>5\end{array}\right.\)\(\Leftrightarrow5^{x^2}>5\Leftrightarrow x^2>1\Leftrightarrow\left[\begin{array}{nghiempt}x< -1\\x>1\end{array}\right.\)
a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)
\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)
\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)
\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)
\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)
\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)
\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)
\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)
\(\Rightarrow x=1\)
Nhận xét rằng \(\sqrt{5}-2=\left(\sqrt{5}-2\right)^{-1}\)
Do đó bất phương trình có thể viết thành :
\(\left(\sqrt{5}-2\right)^{x+1}\ge\left[\left(\left(\sqrt{5}-2\right)^{-1}\right)\right]^{x-3}=\left(\left(\sqrt{5}-2\right)^{3-x}\right)\)
\(\Leftrightarrow x+1\ge3-x\)
\(\Leftrightarrow x\ge1\)
Vậy tập nghiệm của phương trình là :
\(D\left(1;+\infty\right)\)
Vậy bất phương trình có tập nghiệm (-∞; -1)