Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+\frac{x}{2}>\frac{x+2}{3}-1\)
\(\Leftrightarrow6\cdot2x+3\cdot x>2\left(2+x\right)-1\cdot6\)
\(\Leftrightarrow12x+3x-4-2x+6>0\)
\(\Leftrightarrow13x+2>0\Leftrightarrow x>-\frac{2}{13}\)
Vậy tập nghiệm của bất phương trình là : S = { \(\frac{-2}{13}\)}
bạn sửa lại giúp mk là S = { x / x> -2/3 } viết sai nhưng chưa sửa kịp mog bạn thông cảm
Bài 1:
c) |2x - 1| = x + 2
<=> 2x - 1 = +(x + 2) hoặc -(x + 2)
* 2x - 1 = x + 2
<=> 2x - x = 2 + 1
<=> x = 3
* 2x - 1 = -(x + 2)
<=> 2x - 1 = x - 2
<=> 2x - x = -2 + 1
<=> x = -1
Vậy.....
Th1
2x+3=x-4(x>=-3/2)
<=>x=-7(loại)
Th2
2x+3=4-x(x=<-3/2)
<=>3x=1
<=>x=1/3(loại)
Pt vô nghiệm
\(\left|2x+3\right|=x-4\left(x\ge4\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=x-4\\2x+3=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3-4\\3x=4-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(L\right)\\x=\dfrac{1}{3}\left(L\right)\end{matrix}\right.\)
Không có giá trị của x thỏa mãn.
\(\left(x^2+5\right)\left(2x+3\right)\left(3x-1\right)< 0\)
Do \(\left(x^2+5\right)>0\)
\(\Rightarrow bpt\Leftrightarrow\left(2x+3\right)\left(3x-1\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3>0\\3x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3< 0\\3x-1>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{-3}{2}\\x< \frac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{-3}{2}\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-3}{2}< x< \frac{1}{3}\left(chon\right)\\\frac{1}{3}< x< \frac{-3}{2}\left(loai\right)\end{matrix}\right.\)
Vậy...
*Khi |x-3|=x-3 thì x-3\(\ge\)0 \(\Leftrightarrow\) x\(\ge\)3
Phương trình trở thành:
x-3>2x-1
\(\Leftrightarrow\)x-2x>-1+3
\(\Leftrightarrow\)-x>2
\(\Leftrightarrow\)x<-2 (không thỏa mãn điều kiện)
*Khi |x-3|=-(x-3)=3-x thì x-3<0 \(\Leftrightarrow\) x<3
Phương trình trở thành:
3-x>2x-1
\(\Leftrightarrow\)-x-2x>-1-3
\(\Leftrightarrow\)-3x>-4
\(\Leftrightarrow\)x<\(\dfrac{-4}{-3}\)
\(\Leftrightarrow\)x<\(\dfrac{4}{3}\)(thỏa mãn điều kiện)
Vậy phương trình trên có tập nghiệm là S={x|x<\(\dfrac{4}{3}\)}
`a)16x-5x^2-3 <= 0`
`<=>5x^2-16x+3 >= 0`
`<=>5x^2-15x-x+3 >= 0`
`<=>(x-3)(5x-1) >= 0`
`<=>` $\left[\begin{matrix} \begin{cases} x-3 \ge 0<=>x \ge 3\\5x-1 \ge 0<=>x \ge \dfrac{1}{5} \end{cases}\\ \begin{cases} x-3 \le 0<=>x \le 3\\5x-1 \le 0<=>x \le \dfrac{1}{5} \end{cases}\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x \ge 3\\ x \le \dfrac{1}{5}\end{matrix}\right.$
Vậy `S={x|x >= 3\text{ hoặc }x <= 1/5}`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)[2x+5]/[x-24] > 1`
`<=>[2x+5]/[x-24]-1 > 0`
`<=>[2x+5-x+24]/[x-24] > 0`
`<=>[x+29]/[x-24] > 0`
`<=>` $\left[\begin{matrix} x < -29 \\ x > 24\end{matrix}\right.$
Vậy `S={x|x > 24\text{ hoặc }x < -29}`
\(\dfrac{2x-1}{3}\)+\(\dfrac{x-1}{2}\)\(\le3\)
<=> \(\dfrac{2\left(2x-1\right)}{6}\)+\(\dfrac{3\left(x-1\right)}{6}\)\(\le\dfrac{18}{6}\)
<=> 4x -2+3x-3\(\le\)18
<=>7x-5\(\le\)18
<=>7x\(\le\)23
<=>x\(\le\)\(\dfrac{23}{7}\)
Vậy bất phương trình có nghiệm là x\(\le\)\(\dfrac{23}{7}\)
\(\dfrac{2x-1}{3}\)+ \(\dfrac{x-1}{2}\)\(\le\) 3
\(\Leftrightarrow\) \(\dfrac{2.\left(2x-1\right)+3.\left(x-1\right)}{6}\)\(\le\) \(\dfrac{18}{6}\)
\(\Leftrightarrow\) 2.(2x-1)+ 3.( x-1)\(\le\) 18
\(\Leftrightarrow\) 4x- 2+ 3x- 3\(\le\) 18
\(\Leftrightarrow\) 4x+ 3x\(\le\) 18+ 2+ 3
\(\Leftrightarrow\) 7x\(\le\) 23
\(\Leftrightarrow\) x\(\le\) \(\dfrac{23}{7}\)
vậy bpt có no là x\(\le\) \(\dfrac{23}{7}\)