Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
- Với \(x=-\dfrac{3}{2}\) là nghiệm của BPT
- Với \(x>-\dfrac{3}{2}\Rightarrow2x+3>0\)
\(\Rightarrow\dfrac{3\left(2x-3\right)\left(2x+3\right)}{\sqrt{3x^2-3}}\le2x+3\)
\(\Leftrightarrow\dfrac{3\left(2x-3\right)}{\sqrt{3x^2-3}}\le1\)
\(\Rightarrow3\left(2x-3\right)\le\sqrt{3x^2-3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3< 0\\\left\{{}\begin{matrix}2x-3\ge0\\9\left(2x-3\right)^2\le3x^2-3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\11x^2-36x+28\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{14}{11}\le x\le2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\dfrac{3}{2}\le x\le2\end{matrix}\right.\) \(\Rightarrow-\dfrac{3}{2}< x\le2\)
Kết hợp ĐKXĐ \(\Rightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< -1\\1< x\le2\end{matrix}\right.\)
- Với \(x< -\dfrac{3}{2}\Rightarrow2x+3< 0\)
\(\dfrac{3\left(2x-3\right)\left(2x+3\right)}{\sqrt{3x^2-3}}\le2x+3\Leftrightarrow\dfrac{3\left(2x-3\right)}{\sqrt{3x^2-3}}\ge1\)
\(\Rightarrow3\left(2x-3\right)\ge\sqrt{3x^2-3}\)
Do \(x< -\dfrac{3}{2}\Rightarrow3\left(2x-3\right)< 0\Rightarrow\) BPT vô nghiệm
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}-\dfrac{3}{2}\le x< -1\\1< x\le2\end{matrix}\right.\)
ĐKXĐ: \(-1\le x\le2\)
\(\Leftrightarrow2x^2-2x-1+\sqrt{\left(x+1\right)\left(2-x\right)}\le0\)
Đặt \(\sqrt{\left(x+1\right)\left(2-x\right)}=t\ge0\)
\(\Rightarrow2x^2-2x=4-2t^2\)
BPT trở thành:
\(4-2t^2-1+t\le0\Leftrightarrow-2t^2+t+3\le0\Rightarrow\left[{}\begin{matrix}t\le-1\left(l\right)\\t\ge\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)\left(2-x\right)\ge\frac{9}{4}\)
\(\Leftrightarrow x^2-x+\frac{1}{4}\le0\Rightarrow x=\frac{1}{2}\)
Vậy BPT có nghiệm duy nhất \(x=\frac{1}{2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)
\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)
\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)
\(\Leftrightarrow\sqrt{9+2x}< 4\)
\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)
Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)
ĐKXĐ: \(x\ge-\frac{3}{2}\)
Do \(1+\sqrt{3+2x}>0\) nên BPT tương đương:
\(4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\left(1+\sqrt{3+2x}\right)^2\)
\(\Leftrightarrow4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right).4\left(x+1\right)^2\)
- Với \(x=-1\) ko phải là nghiệm
- Với \(x\ne-1\)
\(\Leftrightarrow\left(1+\sqrt{3+2x}\right)^2< 2x+1\)
\(\Leftrightarrow4+2x+2\sqrt{3+2x}< 2x+1\)
\(\Leftrightarrow2\sqrt{3+2x}< -3\)
BPT vô nghiệm
- Với \(x\ge-\frac{3}{2}\)
\(\Leftrightarrow2x^2-x-2\ge2x+3\)
\(\Leftrightarrow2x^2-3x-5\ge0\Rightarrow\left[{}\begin{matrix}x\le-1\\x\ge\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\frac{3}{2}\le x\le-1\\x\ge\frac{5}{3}\end{matrix}\right.\)
- Với \(x< -\frac{3}{2}\)
\(\Leftrightarrow2x^2-x-2\ge-2x-3\)
\(\Leftrightarrow2x^2+x+1\ge0\) (luôn đúng)
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x\le-1\\x\ge\frac{5}{3}\end{matrix}\right.\)