Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^3-27\right)\left(x^3-1\right)\left(2x+3-x^2\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)\left(x-1\right)\left(x^2+x+1\right)\left[4-\left(x-1\right)^2\right]\ge0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+\frac{3}{2}\right)^2+\frac{27}{4}\right]\left(x-1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(4-x+1\right)\left(4+x-1\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(5-x\right)\left(x+3\right)\left[...\right]\left[...\right]\ge0\)(1)
Do [...] và [...] > 0
nên \(\left(1\right)\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(5-x\right)\left(x+3\right)\ge0\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\left(x-1\right)\left(x+3\right)\le0\)
Có: \(x-5< x-3< x-1< x+3\)
Nên xảy ra các trường hợp sau :
TH1:\(\hept{\begin{cases}x-5\le0\\x-3\ge0\end{cases}}\)(Tự giải)
TH2:\(\hept{\begin{cases}x-1\le0\\x+3\ge0\end{cases}}\)(Tự giải)
Cuối cùng gộp khoảng (Nếu được)
Kết luận......
a: \(\Leftrightarrow2x^2-2-3>-5x+\left(2x+1\right)\left(x-3\right)\)
\(\Leftrightarrow2x^2-5>-5x+2x^2-6x+x-3\)
\(\Leftrightarrow2x^2-5>2x^2-10x-3\)
=>-5>-10x-3
=>5<10x+3
=>10x+3>5
=>10x>2
hay x>1/5
b: \(\Leftrightarrow x^2-6x+9+8-4x>x+7\)
\(\Leftrightarrow x^2-10x+17-x-7>0\)
\(\Leftrightarrow x^2-11x+10>0\)
=>x>10 hoặc x<1
a: ⇔2x2−2−3>−5x+(2x+1)(x−3)⇔2x2−2−3>−5x+(2x+1)(x−3)
⇔2x2−5>−5x+2x2−6x+x−3⇔2x2−5>−5x+2x2−6x+x−3
⇔2x2−5>2x2−10x−3⇔2x2−5>2x2−10x−3
=>-5>-10x-3
=>5<10x+3
=>10x+3>5
=>10x>2
hay x>1/5
b: ⇔x2−6x+9+8−4x>x+7⇔x2−6x+9+8−4x>x+7
⇔x2−10x+17−x−7>0⇔x2−10x+17−x−7>0
⇔x2−11x+10>0⇔x2−11x+10>0
=>x>10 hoặc x<1
BPT\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)\left(x-1\right)\left(x^2+x+1\right)\left(3-x\right)\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(3-x\right)\left(x+1\right)\ge0\) VÌ \(\left(\left(x^2+3x+9\right).\left(x^2+x+1\right)>0với\forall x\right)\)
\(\Leftrightarrow\left(x-3\right)^2.\left(1-x\right)\left(1+x\right)\ge0\)
\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge0\left(vì\left(x-3\right)^2\ge0voi\forall x\right)\)
\(\Leftrightarrow-1\le x\le1\)
a: (2x+3)(x+1)<0
=>2x+3 và x+1 khác dấu
=>x>-1 hoặc x<-3/2
b: (4-x)(x+2)>0
=>(x-4)(x+2)<0
=>-2<x<4
a: (2x+3)(x+1)<0
=>2x+3 và x+1 khác dấu
=>x>-1 hoặc x<-3/2
b: (4-x)(x+2)>0
=>(x-4)(x+2)<0
=>-2<x<4
a: \(\dfrac{2x-6}{x+2}>0\)
=>x-3>0 hoặc x+2<0
=>x>3 hoặc x<-2
b:
Theo BXD, ta có: f(x)>0
=>-3<x<1 hoặc x>2