\(\dfrac{7x-8}{32}\) - \(\dfrac{5-x}{16}\) > 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2023

\(\Leftrightarrow\dfrac{7x-8}{32}-\dfrac{2\left(5-x\right)}{32}>\dfrac{16\left(x+9\right)}{32}+\dfrac{4}{32}\)

\(\Leftrightarrow7x-8-2\left(5-x\right)>16\left(x+9\right)+4\)

\(\Leftrightarrow7x-8-10+2x>16x+148\)

\(\Leftrightarrow-7x>166\)

\(\Rightarrow x< -\dfrac{166}{7}\)

2 tháng 4 2023

loading...

a: =>-12x>12

hay x<-1

b: =>7(3x-1)-252>=21x+3(6x+1)

=>21x-7-252>=21x+18x+3

=>18x+3<=-259

=>18x<=-262

hay x<=-131/9

c: =>3(3x+5)-24x<=48+4(x+8)

=>9x+15-24x<=48+4x+32=4x+80

=>-15x+24<=4x+80

=>-19x<=56

hay x>=-56/19

29 tháng 4 2018

a) \(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}\)<\(\dfrac{3-x}{5}-\dfrac{2x-1}{4}\)

=> 20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)

<=>40x-100-90x+30<36-12x-30x+15

<=>-50x-70<51-42x

<=>-50x+42x<51+70

<=> -8<121

<=>x>\(\dfrac{-121}{8}\)

=> S={x|x>\(\dfrac{-121}{8}\)}

29 tháng 4 2018

b) 5x-\(\dfrac{3-2x}{2}\)>\(\dfrac{7x-5}{2}\)+x

=> 10x-(3-2x)>7x-5+2x

<=>10x-3+2x>7x-5+2x

<=>10x-3>7x-5

<=>10x-7x>-5+3

<=>3x>-2

<=>x>\(\dfrac{-2}{3}\)

=>S={x|x>\(\dfrac{-2}{3}\)}

26 tháng 7 2018

các bn giúp mik với!! vài câu cx được

a: \(\Leftrightarrow-12x-4=8x-2-8-6x\)

=>-12x-4=2x-10

=>-14x=-6

hay x=3/7

b: \(\Leftrightarrow3\left(5x-3\right)-2\left(5x-1\right)=-4\)

=>15x-9-10x+2=-4

=>5x-7=-4

=>5x=3

hay x=3/5(loại)

c: \(\Leftrightarrow x^2-4+3x+3=3+x^2-x-2\)

\(\Leftrightarrow x^2+3x-1=x^2-x+1\)

=>4x=2

hay x=1/2(nhận)

4 tháng 4 2018

a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)

Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu

mà 1>0

=>x + 2 > 0 <=> x > 2

\(\Rightarrow S=\left\{x|x>2\right\}\)

b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)

Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu

\(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)

\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)

c. Ta có bảng xét dấu:

x -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\)
x+1 - 0 + +
2x+1 - - 0 +
\(\dfrac{2x+1}{x+1}\) + \(//\) - 0 +

4 tháng 4 2018

Bổ xung câu c:

Vậy : \(-1< x\le\dfrac{-1}{2}\)

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

1 tháng 1 2018

\(\dfrac{x-1}{9}+\dfrac{x-2}{8}+\dfrac{x-3}{7}=\dfrac{x-9}{1}+\dfrac{x-8}{2}+\dfrac{x-7}{3}\\ \Leftrightarrow\dfrac{x-1}{9}-1+\dfrac{x-2}{8}-1+\dfrac{x-3}{7}-1=\dfrac{x-9}{1}-1+\dfrac{x-8}{2}-1+\dfrac{x-7}{3}-1\\ \Leftrightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-10}{7}=\dfrac{x-10}{1}+\dfrac{x-10}{2}+\dfrac{x-10}{3}\\ \Leftrightarrow\left(x-10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{7}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\Leftrightarrow x-10=0\\ \Leftrightarrow x=10\)

1 tháng 1 2018

Trừ 2 vế với 1:

\(\Rightarrow\dfrac{x-1}{9}+\dfrac{x-2}{8}+\dfrac{x-3}{7}+3=\dfrac{x-9}{1}+\dfrac{x-8}{2}+\dfrac{x-7}{3}+3\)

\(\Rightarrow\left(\dfrac{x-1}{9}-1\right)+\left(\dfrac{x-2}{8}-1\right)+\left(\dfrac{x-3}{7}-1\right)=\left(\dfrac{x-9}{1}-1\right)+\left(\dfrac{x-8}{2}-1\right)+\left(\dfrac{x-7}{3}-1\right)\)

\(\Rightarrow\left(\dfrac{x-1}{9}-\dfrac{9}{9}\right)+\left(\dfrac{x-2}{8}-\dfrac{8}{8}\right)+\left(\dfrac{x-3}{7}-\dfrac{7}{7}\right)=\left(\dfrac{x-9}{1}-\dfrac{1}{1}\right)+\left(\dfrac{x-8}{2}-\dfrac{2}{2}\right)+\left(\dfrac{x-7}{3}-\dfrac{3}{3}\right)\)

\(\Rightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-3}{7}=\dfrac{x-10}{1}+\dfrac{x-10}{2}+\dfrac{x-10}{3}\)

\(\Rightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-10}{7}-\dfrac{x-10}{1}-\dfrac{x-10}{2}-\dfrac{x-10}{3}\)

\(\Rightarrow\left(x-10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{7}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left(x-10\right)=0\)

\(\Rightarrow x=10\)

3 tháng 1 2018

\(=\left(\dfrac{1}{1-x}+\dfrac{1}{1+x}\right)+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

6 tháng 5 2017

Ta có : \(\dfrac{3-7x}{1+x}\ge\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{3-7x}{1+x}-\dfrac{1}{2}\ge0\)

\(\Leftrightarrow\dfrac{2\left(3-7x\right)-\left(x+1\right)}{2\left(x+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{5-15x}{2\left(x+1\right)}=\dfrac{5\left(3-x\right)}{2\left(x+1\right)}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3-x\ge0\\x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3-x\le0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le3\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge3\\x< -1\end{matrix}\right.\end{matrix}\right.\)

Vậy suy ra tập nghiệm

b, (x+4)(5x+9)-x>4

\(\Leftrightarrow\)5x2+29x+36-x>4

\(\Leftrightarrow\)5x2+28x+36>4

\(\Leftrightarrow\)5x2+28x+32>0

\(\Leftrightarrow\)5(x2+\(\dfrac{28}{5}\)x+\(\dfrac{32}{5}\))>0

\(\Leftrightarrow\)x2+\(\dfrac{28}{5}\)x+\(\dfrac{32}{5}\)>0

\(\Leftrightarrow\)x2+2.\(\dfrac{14}{5}\)x+\(\dfrac{206}{25}\)+\(\dfrac{32}{5}\)-\(\dfrac{206}{25}\)>0

\(\Leftrightarrow\)(x+\(\dfrac{14}{5}\))2-\(\dfrac{46}{25}\)>0

\(\Leftrightarrow\)(x+\(\dfrac{14-\sqrt{46}}{5}\))(x+\(\dfrac{14+\sqrt{46}}{5}\))>0

\(\Leftrightarrow\)2 trường hợp

30 tháng 4 2018

\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)

\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)

\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)

Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)