Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\sqrt{4-3x}=8\)
\(\Leftrightarrow4-3x=64\)
\(\Leftrightarrow3x=-60\)
hay x=-20
b: ta có: \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
\(\Leftrightarrow2\sqrt{x-2}-12\cdot\dfrac{\sqrt{x-2}}{3}=-1\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
hay \(x=\dfrac{9}{4}\)
a \(\Leftrightarrow\left\{{}\begin{matrix}6x^2-3xy+x=1-y\left(1\right)\\x^2+y^2=1\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow6x^2-3xy+x-1+y=0\)
\(\Leftrightarrow\left(6x^2+x-1\right)-\left(3xy-y\right)=0\) \(\Leftrightarrow\left(6x^2+3x-2x-1\right)+y\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1\right)+y\left(3x-1\right)=0\) \(\Leftrightarrow\left(3x-1\right)\left(2x+1+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x+y=-1\end{matrix}\right.\)
*Nếu 3x-1=0⇔x=\(\dfrac{1}{3}\) Thay vào (2) ta được:
\(\dfrac{1}{9}+y^2=1\Leftrightarrow y^2=\dfrac{8}{9}\Leftrightarrow y=\dfrac{\pm2\sqrt{2}}{3}\)
*Nếu 2x+y=-1\(\Leftrightarrow y=-1-2x\) Thay vào (2) ta được :
\(\Rightarrow x^2+\left(-2x-1\right)^2=1\Leftrightarrow x^2+4x^2+4x+1=1\Leftrightarrow5x^2+4x=0\Leftrightarrow x\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-4}{5}\end{matrix}\right.\)
.Nếu x=0⇒y=0
.Nếu x=\(\dfrac{-4}{5}\) \(\Rightarrow y=-1+\dfrac{4}{5}=-\dfrac{1}{5}\) Vậy...
Câu b)
\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x\left(x-1\right)+y\left(x-1\right)\\x^2-3xy+4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+y\right)=0\\x^2-3xy+4=0\left(2\right)\end{matrix}\right.\)
Để (x-1)(2x+y) = 0 thì: \(\left[{}\begin{matrix}x-1=0\\2x+y=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=1\\2x+y=0\end{matrix}\right.\)
Thay x=1 vào PT (2) ta có:
(2) ⇔12-3.1.y+4=0
⇔1-3y +4=0
⇔-3y+5=0
⇔y=\(\dfrac{5}{3}\)
Vậy HPT có nghiệm (x:y) = (1;\(\dfrac{5}{3}\))
a) x + y = 6 (1)
2x - 3y = 12 (2)
(1) ⇔ x = 6 - y (3)
Thế (3) vào (2) ta có:
2(6 - y) - 3y = 12
⇔ 12 - 2y - 3y = 12
⇔ -5y = 12 - 12
⇔ -5y = 0
⇔ y = 0
Thế y = 0 vào (3) ta có:
x = 6 - 0
⇔ x = 6
Vậy S = {6; 0}
b) x - y = 5 (4)
(x - 2)(y + 3) = 3 + xy (5)
(5) ⇔ xy + 3x - 2y - 6 = 3 + xy
⇔ 3x - 2y = 3 + 6
⇔ 3x - 2y = 9 (6)
(4) ⇔ x = y + 5 (7)
Thế x = y + 5 vào (6) ta có:
(6) ⇔ 3(y + 5) - 2y = 9
⇔ 3y + 15 - 2y = 9
⇔ y = 9 - 15
⇔ y = -6
Thế y = -6 vào (7) ta có:
x = -6 + 5
⇔ x = -1
Vậy S ={-1; -6}
a. ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)
\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)
Pt trở thành:
\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)
\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)
\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)
\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)
b.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)
Pt trở thành:
\(t=t^2-4-16\Leftrightarrow...\)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\
.\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
a: \(x^2\cdot2\sqrt{3}+x+1=\sqrt{3}\cdot\left(x+1\right)\)
=>\(x^2\cdot2\sqrt{3}+x\left(1-\sqrt{3}\right)+1-\sqrt{3}=0\)
\(\text{Δ}=\left(1-\sqrt{3}\right)^2-4\cdot2\sqrt{3}\left(1-\sqrt{3}\right)\)
\(=4-2\sqrt{3}-8\sqrt{3}\left(1-\sqrt{3}\right)\)
\(=4-2\sqrt{3}-8\sqrt{3}+24=28-10\sqrt{3}=\left(5-\sqrt{3}\right)^2>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x_1=\dfrac{-\left(1-\sqrt{3}\right)-\left(5-\sqrt{3}\right)}{2\cdot2\sqrt{3}}=\dfrac{-1+\sqrt{3}-5+\sqrt{3}}{4\sqrt{3}}=\dfrac{1-\sqrt{3}}{2}\\x_2=\dfrac{-\left(1-\sqrt{3}\right)+5-\sqrt{3}}{2\cdot2\sqrt{3}}=\dfrac{4}{4\sqrt{3}}=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)
b: \(5x^2-3x+1=2x+31\)
=>\(5x^2-3x+1-2x-31=0\)
=>\(5x^2-5x-30=0\)
=>\(x^2-x-6=0\)
=>(x-3)(x+2)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
c: \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right)\)
=>\(x^2+2\sqrt{2}x+4-3x-3\sqrt{2}=0\)
=>\(x^2+x\left(2\sqrt{2}-3\right)+4-3\sqrt{2}=0\)
\(\text{Δ}=\left(2\sqrt{2}-3\right)^2-4\left(4-3\sqrt{2}\right)\)
\(=17-12\sqrt{2}-16+12\sqrt{2}=1\)>0
Do đó, phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x_1=\dfrac{-\left(2\sqrt{2}-3\right)-1}{2}=\dfrac{-2\sqrt{2}+3-1}{2}=-\sqrt{2}+1\\x_2=\dfrac{-\left(2\sqrt{2}-3\right)+1}{2}=\dfrac{-2\sqrt{2}+4}{2}=-\sqrt{2}+2\end{matrix}\right.\)
bạn tự kl nhaaa
a, \(\left(x-2\right)\left(x+8\right)>x\left(x+2\right)\)
\(\Leftrightarrow x^2+6x-16>x^2+2x\Leftrightarrow4x-16>0\Leftrightarrow-16>-4x\Leftrightarrow x>4\)
b, \(2\left(x-1\right)-12< 0\Leftrightarrow2x-2-12< 0\Leftrightarrow-14< -2x\Leftrightarrow x< 7\)