Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (3x-1)(x+2)>0
=> (3x-1) và (x+2) cùng dấu
Xét trường hợp (3x-1) và (x+2) cùng dương
3x+1>0=> x>-1/3
và x+2>0=> x>-2
Xét trường hợp (3x-1) và (x+2) cùng âm
3x+1<0=> x<-1/3
và x+2<0=> x<-2
từ 2 TH trên => x>-1/3 và x<-2
Vì ( 3x -1 )( x + 2 ) > 0
=> ( 3x-1) và (x+2) cùng dấu
Xét trường hợp (3x-1) và (x+2) cùng dương
3x+1 > 0 => x > (-1/3 )
và x+2 > 0=> x > ( -2 )
Xét trường hợp (3x-1) và (x+2) cùng âm
3x+1 < 0 => x < (-1/3 )
và x+2 < 0 => x < (-2)
từ 2 TH trên => x > (-1/3 ) và x < (-2)
\(\Delta=9-4\left(1-m\right)=4m+5\)
Pt có 2 nghiệm khi: \(4m+5\ge0\Rightarrow m\ge-\dfrac{5}{4}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=1-m\end{matrix}\right.\)
\(x_1^2+x_2^2=17\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=17\)
\(\Leftrightarrow9-2\left(1-m\right)=17\)
\(\Leftrightarrow2m=10\)
\(\Rightarrow m=5\) (thỏa mãn)
a,\(6x^2+x-5=0\)
\(\Delta=b^2-4ac=1^2-4.6.\left(-5\right)=1+120=121\)
Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{121}}{2.6}=\frac{-1-11}{12}=\frac{-12}{12}=-1\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{121}}{2.6}=\frac{-1+11}{12}=\frac{10}{12}=\frac{5}{6}\)
Vậy \(S=\left\{-1;\frac{5}{6}\right\}\)
b, \(3x^2+4x+2=0\)
\(\Delta=b^2-4ac=4^2-4.3.2=16-24=-8\)
Vì \(\Delta< 0\)nên pt vô nghiệm
c, \(x^2-8x+16=0\)
\(\Delta=b^2-4ac=\left(-8\right)^2-4.1.16=64-64=0\)
Vì \(\Delta=0\)nên pt có nghiệm kép
\(x_1=x_2=\frac{-b}{2a}=\frac{-b'}{a}=\frac{8}{4}=\frac{4}{2}=2\)
a) \(6x^2+x-5=0\)
Ta có : \(\Delta=1+4.6.5=121>0\)
\(\Rightarrow\sqrt{\Delta}=11\)
Phương trình có hai nghiệm :
\(x_1=\frac{-1+11}{2.6}=\frac{5}{6}\)
\(x_2=\frac{-1-11}{2.6}=-1\)
b) \(3x^2+4x+2=0\)
Ta có : \(\Delta=4^2-4.3.2=-8< 0\)
Vậy phương trình vô nghiệm
c) \(x^2-8x+16=0\)
Ta có : \(\Delta=\left(-8\right)^2-4.1.16=0\)
Phương trình có nghiệm kép :
\(x_1=x_2=\frac{8}{2}=-4\)
ĐKXĐ: \(x\le2\)
Xét trên miền xác định:
\(\Leftrightarrow\dfrac{2x^3+3x}{7-2x}-1+1-\sqrt{2-x}>0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(2x^2+2x+7\right)}{7-2x}+\dfrac{x-1}{1+\sqrt{2-x}}>0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{2x^2+2x+7}{7-2x}+\dfrac{1}{1+\sqrt{2-x}}\right)>0\)
\(\Leftrightarrow1< x\le2\)
a: =>(x-3)(x+1)=0
=>x=3 hoặc x=-1
b: =>x(x-3)=0
=>x=0 hoặc x=3
c: =>(x-5)(x+1)=0
=>x=5 hoặc x=-1
d: =>5x^2+7x-5x-7=0
=>(5x+7)(x-1)=0
=>x=1 hoặc x=-7/5
e: =>x^2-4=0
=>x=2 hoặc x=-4
h: =>x^2-4x+4-3=0
=>(x-2)^2=3
=>\(x=2\pm\sqrt{3}\)
3x2-x+1>0
x(3x-1)+1>0
Vì 1>0 mà x(3x-1)+1>0 thì x(3x-1)>0
*)Nếu x>0 thì 3x-1>0
3x>1
x>1/3
=>x>1/3
*)Nếu x<0 thì 3x-1<0
3x<1
x<1/3
=>x<0
Vậy hoặc x>1/3 hoặc x<0 thì 3x2-x+1>0
mk ko biết giải vầy đúng chưa nhưng (mk giải theo kiến thức lớp 7)
3\(\left(x-\frac{1}{6}\right)^2+\frac{11}{12}>0\left(dung\right)\)Vay x thuoc R