Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\
.\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:
\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)
\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)
Ta có:
\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)
\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)
Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(a,\) Đặt \(x^2+2x=a\), pt trở thành:
\(a^2-3a+2=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=0\left(1\right)\\x^2+2x-2=0\left(2\right)\end{matrix}\right.\)
\(\left[{}\begin{matrix}\Delta\left(1\right)=4+4=8\\\Delta\left(2\right)=4+8=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{8}}{2}\\x=\dfrac{-2+\sqrt{8}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{12}}{2}\\x=\dfrac{-2+\sqrt{12}}{2}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1-\sqrt{2}\\x=-1+\sqrt{2}\\x=-1-\sqrt{3}\\x=-1+\sqrt{3}\end{matrix}\right.\)
\(b,\) Đặt \(x^2+x=b\), pt trở thành:
\(b\left(b+1\right)-6=0\\ \Leftrightarrow b^2+b-6=0\\ \Leftrightarrow\left[{}\begin{matrix}b=2\\b=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\\x\in\varnothing\left[x^2+x+3=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
\(d,x^4-2x^3+x=2\\ \Leftrightarrow x^4-2x^3+x-2=0\\\Leftrightarrow\left(x^3+1\right)\left(x-2\right)=0 \\ \Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x\in\varnothing\left[x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Lời giải:
a.
PT $\Leftrightarrow (x^2+2x)^2-(x^2+2x)-2[(x^2+2x)-1]=0$
$\Leftrightarrow (x^2+2x)(x^2+2x-1)-2(x^2+2x-1)=0$
$\Leftrightarrow (x^2+2x-1)(x^2+2x-2)=0$
$\Leftrightarrow x^2+2x-1=0$ hoặc $x^2+2x-2=0$
$\Leftrightarrow x=-1\pm \sqrt{2}$ hoặc $x=-1\pm \sqrt{3}$
b.
PT $\Leftrightarrow (x^2+x)^2+(x^2+x)-6=0$
$\Leftrightarrow (x^2+x)^2-2(x^2+x)+3(x^2+x)-6=0$
$\Leftrightarrow (x^2+x)(x^2+x-2)+3(x^2+x-2)=0$
$\Leftrightarrow (x^2+x-2)(x^2+x+3)=0$
$\Leftrightarrow x^2+x-2=0$ (chọn) hoặc $x^2+x+3=0$ (loại do $x^2+x+3=(x+0,5)^2+2,75>0$)
$\Leftrightarrow x=-1\pm \sqrt{3}$
c. Nghiệm khá xấu. Bạn coi lại đề.
d.
PT $\Leftrightarrow x^3(x-2)+(x-2)=0$
$\Leftrightarrow (x^3+1)(x-2)=0$
$\Leftrightarrow x^3+1=0$ hoặc $x-2=0$
$\Leftrightarrow x=-1$ hoặc $x=2$
a) Ta có: \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-4\left|y\right|=18\\6x+9\left|y\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13\left|y\right|=15\\3x-2\left|y\right|=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|y\right|=\dfrac{-15}{13}\\3x-2\left|y\right|=9\end{matrix}\right.\Leftrightarrow\)Phương trình vô nghiệmVậy: \(S=\varnothing\)
$\begin{cases}3x-2|y|=9\\2x+3|y|=1\\\end{cases}$
`<=>` $\begin{cases}6x-4|y|=18\\6x+9|y|=3\\\end{cases}$
`<=>` $\begin{cases}13|y|=-15(loại)\\|3x|-2|y|=9\\\end{cases}$
Vậy HPT vô nghiệm
\(\Leftrightarrow2x^2+3x-2-2\le2x^2+2x-3\Leftrightarrow x+1\le0\Leftrightarrow x\le1\)