Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
TXĐ: x + 2 > 0 1 − x > 0 ⇔ − 2 < x < 1.
Bất phương trình tương đương với:
log 3 x + 2 1 − x ≥ 1 ⇔ x + 2 1 − x ≥ 3 ⇔ x + 2 ≥ 3 − 3 x ⇔ x ≥ 1 4 .
Do đó a = 1 4 ; b = 1 nên
S = 2 2 + 1 3 = 5.
Đáp án A.
Ta có: log π 6 log 3 x - 2 > 0 ⇔ 0 < log 3 x - 2 < 1 ⇔ x - 2 > 1 x - 2 < 3 ⇔ 3 < x < 5
Vậy S = 3 ; 5 ⇒ b - a = 2 .
Ta có:
Ta có
Ta có bảng xét dấu sau:
Từ BBT kết hợp điều kiện của t ta có:
Chọn: D