K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sốỨng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

g'(x) là đạo hàm của g(x) phải không bạn? Xét đạo hàm tới 2 lần lận à?

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

Lời giải:

Đồ thị màu xanh lá là $y=4^x$

Đồ thị màu xanh dương là $y=\left(\frac{1}{4}\right)^x$

Bài 3: Lôgarit

13 tháng 8 2020

câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi

NV
13 tháng 8 2020

Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?

Đáp án D chứ sao nữa

1 f(x) là một nguyên hàm của hàm số f(x)=1/2x-1 biết f(1)=2 . tính f(2) 2 cho hàm số f(x) liên tục trên R và F(x) là nguyên hàm của f(x) biết \(\int_0^9\) f(x)dx=9 và f(0)=3. tính f(9) 3 biết f(x) là một nguyên hàm của hàm số f(x) =1/2x+1 và f(0)=1. tính giá trị f(2) 4 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=xe^x , trúc hoành và hai đường thẳng x=-2, x=3 có công thức là 5 diện tích hình phẳng...
Đọc tiếp

1 f(x) là một nguyên hàm của hàm số f(x)=1/2x-1 biết f(1)=2 . tính f(2)

2 cho hàm số f(x) liên tục trên R và F(x) là nguyên hàm của f(x) biết \(\int_0^9\) f(x)dx=9 và f(0)=3. tính f(9)

3 biết f(x) là một nguyên hàm của hàm số f(x) =1/2x+1 và f(0)=1. tính giá trị f(2)

4 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=xe^x , trúc hoành và hai đường thẳng x=-2, x=3 có công thức là

5 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=-x^2 +4 , trục hoành và các đường thẳng x=0,x=3 là

6 diện tích giới hạn bởi đường thẳng x=0,x=\(\pi\) đồ thị hàm số cosx và trục ox la

7 công thức tính diện tích hình phẳng giới hạn bởi đồ thị y=f(x) trục ox và hai đường thẳng x=a, x=b (a<b) là

8diện tích hình phẳng giới hạn bởi đồ thị hàm số y =x^2+3 và y=4x là

9 ính diện tích hình phẳng giới hạn bởi y=-x^2+2x;y=-3x

10 diện tích hình phẳng giới hạn bởi hai đường hảng x=0,x=\(\pi\) , đồ thị hàm số y=cosx và trục ox là

11 gọi S là diện tích hình phẳng giới hạn bởi các đường y=x^3,y=2 và y=0 là

12 tính thể tích V của vật ròn xoay tạo thành khi quay hình phẳng (h) giới hạn bởi các đường y=x^2;y=\(\sqrt{x}\) quanh trục ox

13 cho phần vậy thể B giới hạn bởi hai mặt phẳng có phương trình x=0, x-\(\frac{\pi}{3}\)cắt phần vật thể B bởi mặ phẳng vuông góc trục ox tại điểm có hoành độ x(0\(\le x\le\frac{\pi}{3}\) ta được thiết diện là mộ tam giác vuông có độ dài hai cạnh lần lượt là 2x và cosx. thể tích vật thể B là

14 thể tích V của vật thể nằm giữa hai mặt phẳng x=0 , x= \(\pi\) biết rằng thiết diện của vật có thể bị cắt bởi mặt phẳng vuông góc trục ox tại điểm có hoành độ x \(0\le x\le1\) được thiết diện là hình vuông có cạnh (x+1)

15 Tính thể tích của vật thể nằm giữa hai mặt phẳng x=−1x=−1x=1x=1, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục OxOx có hoành độ x(−1≤x≤1)x(−1≤x≤1) là một tam giác vuông cân với cạnh 2\(\sqrt{1-x^2}\) thể tích vật thể là

16 cho hai số phức z=a+bi ,\(z^,\)=c+di. hai số phức z=\(z^,\) khi

a {a=c, bi=di} B {a=d,b=c} C {a=c,b=d} D(a=b,c=d}

17cho số phức z=3-2i tim phẩn ảo của số phức liên hợp z

18 cho số phức z= 3+2i . tìm phần thực của số phức z^2

19 cho hai số phức z=1+3i ,w=2-i tim phẩn ảo của số phức u=\(\overline{z}\) .w

20 trong mặt phẳng oxy, cho điểm A(4,0),B(1;4) và C(1;-1) . GỌI G là trọng tâm tam giác ABC . Biết rằng G là biểm biểu diễn số phức z là

A z=3+3/2i B=3-3/2i C z=2-i D z=2+i

21 cho số phức thỏa (1-i)+4\(4\overline{z}\) =7-7i .Mô đun của số phức z là

7
NV
16 tháng 5 2020

19.

\(\overline{z}=1-3i\)

\(\Rightarrow u=\left(1-3i\right)\left(2-i\right)=2+3i^2-7i=-1-7i\)

Phần ảo bằng -7

20.

Tọa độ G: \(\left\{{}\begin{matrix}x_G=\frac{x_A+x_B+x_C}{3}=2\\y_G=\frac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)

Biểu diễn trên mặt phẳng phức: \(z=2+i\)

21.

Đề đúng là \(\left(1-i\right)+44\overline{z}=7-7i\) chứ?

\(\Rightarrow44\overline{z}=6-6i\Rightarrow\overline{z}=\frac{3}{22}-\frac{3}{22}i\)

\(\Rightarrow z=\frac{3}{22}+\frac{3}{22}i\Rightarrow\left|z\right|=\sqrt{\left(\frac{3}{22}\right)^2+\left(\frac{3}{22}\right)^2}=\frac{3\sqrt{2}}{22}\)

NV
16 tháng 5 2020

15.

Diện tích thiết diện:

\(S=\frac{1}{2}\left(2\sqrt{1-x^2}\right)^2=2\left(1-x^2\right)=2-2x^2\)

Thể tích:

\(S=\int\limits^1_{-1}\left(2-2x^2\right)dx=\frac{8}{3}\)

16.

\(z=z'\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\) (phần thực bằng phần thực, phần ảo bằng phần ảo)

17.

\(\overline{z}=3+2i\Rightarrow\) phần ảo là 2 (không phải 2i đâu)

18.

\(z=3+2i\Rightarrow z^2=\left(3+2i\right)^2=9+4i^2+12i=5+12i\)

\(\Rightarrow\) phần thực bằng 5

31 tháng 3 2017

a) Xét hàm số y = f(x) = tanx – x với x ∈ [0 ; ).

Ta có : y’ = - 1 ≥ 0, x ∈ [0 ; ); y’ = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ).

Từ đó ∀x ∈ (0 ; ) thì f(x) > f(0) ⇔ tanx – x > tan0 – 0 = 0 hay tanx > x.

b) Xét hàm số y = g(x) = tanx – x - . với x ∈ [0 ; ).

Ta có : y’ = - 1 - x2 = 1 + tan2x - 1 - x2 = tan2x - x2

= (tanx - x)(tanx + x), ∀x ∈ [0 ; ).

Vì ∀x ∈ [0 ; ) nên tanx + x ≥ 0 và tanx - x >0 (theo câu a).

Do đó y' ≥ 0, ∀x ∈ [0 ; ).

Dễ thấy y' = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ). Từ đó : ∀x ∈ [0 ; ) thì g(x) > g(0) ⇔ tanx – x - > tan0 - 0 - 0 = 0 hay tanx > x + .

21 tháng 8 2017

tìm 2 điểm A và B . tam giác vuông tại 0 => vecto OA*OB= 0 với O là gốc

21 tháng 8 2017

a đù xem lần đầu sao k có pt h lại có . bài này mk tìm dc denta'=1=> nghiệm x1=m+1:x2=m-1( theo công thức nghiệm)=>A(m+1:0),B(m-1;0) => vì tam giác OAB vuông mà O là gốc nên => tích OA.OB=0 <=>(m+1)*(m-1)+0*0=0 => m^2-1=0 => m=+-1