K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+3\frac{1}{a}.\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3\frac{1}{a}\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3\frac{1}{a}\frac{1}{b}\left(-\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\frac{1}{abc}=\frac{3}{abc}\)

Ta lại có :

\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{bca}{b^3}+\frac{cab}{c^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

\(\)

16 tháng 8 2020

Bài làm:

Ta có: \(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

CM HĐT phụ:

Ta có: \(a^3+b^3+c^3=\left(a^3+b^3+c^3-3abc\right)+3abc\)

\(=\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\right]+3abc\)

\(=\left[\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\right]+3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)

Áp dụng vào trên ta được:

\(abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\left[\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{bc}-\frac{1}{ca}\right)+\frac{3}{abc}\right]\)

Mà  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(P=abc.\frac{3}{abc}=3\)

Vậy P = 3

3 tháng 3 2017

Theo dieu kien de bai:  a=b=-1 va c=2

P=4+1+1+16=22

3 tháng 3 2017

P=22 chac chan dung