Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a) Rút gọn P :
\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)
\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)
\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)
a) P xác định \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Leftrightarrow x\ne\left\{-5;0\right\}}\)
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{5\left(10-x\right)}{2x\left(x+5\right)}\)
\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+5x^2-x^2-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+5\right)-x\left(x+5\right)}{2x\left(x+5\right)}\)
\(P=\frac{\left(x+5\right)\left(x^2-x\right)}{2x\left(x+5\right)}\)
\(P=\frac{x\left(x-1\right)}{2x}\)
\(P=\frac{x-1}{2}\)
c) Để P = 0 thì \(x-1=0\Leftrightarrow x=1\)( thỏa mãn ĐKXĐ )
Để P = 1/4 thì \(\frac{x-1}{2}=\frac{1}{4}\)
\(\Leftrightarrow4\left(x-1\right)=2\)
\(\Leftrightarrow4x-4=2\)
\(\Leftrightarrow4x=6\)
\(\Leftrightarrow x=\frac{3}{2}\)( thỏa mãn ĐKXĐ )
d) Để P > 0 thì \(\frac{x-1}{2}>0\)
Mà 2 > 0, do đó để P > 0 thì \(x-1>0\Leftrightarrow x>1\)
Để P < 0 thì \(\frac{x-1}{2}< 0\)
Mà 2 > 0, do đó để P < 0 thì \(x-1< 0\Leftrightarrow x< 1\)
a.
ĐKXĐ: \(x\ne2\)
b.
\(P=\left(\dfrac{2x}{x-2}+\dfrac{x}{2-x}\right):\dfrac{x^2+1}{x-2}\)
\(=\left(\dfrac{2x}{x-2}-\dfrac{x}{x-2}\right)\cdot\dfrac{x-2}{x^2+1}\)
\(=\dfrac{x}{x-2}\cdot\dfrac{x-2}{x^2+1}=\dfrac{x}{x^2+1}\)
c.
\(x=-1\Rightarrow P=-\dfrac{1}{\left(-1\right)^2+1}=-\dfrac{1}{2}\)
d.
\(P=\dfrac{x}{x^2+1}\cdot\dfrac{x^2+1}{x}-\dfrac{1}{P}\ge1-\dfrac{1}{P}\)
\(\Rightarrow\dfrac{P^2+1}{P}\ge1\)
\(\Rightarrow P^2+1\ge P\) \(\Rightarrow P\left(P-1\right)\ge1\)
\(\Rightarrow P\ge2\)
Dấu "=" khi x = ...................
Bài 2:
a: \(M=\dfrac{3x+1-2x-2}{\left(3x-1\right)\left(3x+1\right)}:\dfrac{3x+1-3x}{x\left(3x+1\right)}\)
\(=\dfrac{x-1}{\left(3x-1\right)\left(3x+1\right)}\cdot\dfrac{x\left(3x+1\right)}{1}=\dfrac{x\left(x-1\right)}{3x-1}\)
b: Để M=0 thì x(x-1)=0
=>x=1(nhận) hoặc x=0(loại)
c: \(P=M\cdot\left(3x-1\right)=x\left(x-1\right)=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/2
\(Câu\text{ }1:\)
\(\text{ a) }A=\dfrac{4}{x^2+2}+\dfrac{3}{2-x^2}-\dfrac{12}{4-x^4}\\ A=\dfrac{4\left(2-x^2\right)}{\left(x^2+2\right)\left(2-x^2\right)}+\dfrac{3\left(2+x^2\right)}{\left(2-x^2\right)\left(2+x^2\right)}-\dfrac{12}{\left(2+x^2\right)\left(2-x^2\right)}\\ A=\dfrac{4\left(2-x^2\right)+3\left(2+x^2\right)-12}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{8-4x^2+6+3x^2-12}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{-x^2-2}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{-\left(x^2+2\right)}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{-1}{2-x^2}\)
\(\text{b) }Để\text{ }A=-3\\ thì\Rightarrow\dfrac{-1}{2-x^2}=-3\\ \Leftrightarrow2-x^2=3\\ \Leftrightarrow x^2=-1\\ \Leftrightarrow x\text{ }không\text{ }có\text{ }giá\text{ }trị\left(vì\text{ }x^2\ge0\forall x\right)\\ \text{ }Vậy\text{ }để\text{ }A=-3\text{ }thì\text{ }x\text{ }không\text{ }có\text{ }giá\text{ }trị.\)
\(\text{c) }Ta\text{ }có:\text{ }A=\dfrac{-1}{2-x^2}\\ A=\dfrac{1}{x^2-2}\\ x^2\ge0\forall x\\ \Rightarrow x^2-2\ge-2\forall x\\ \Rightarrow A=\dfrac{1}{x^2-2}\le-\dfrac{1}{2}\\ Dấu\text{ }"="\text{ }xảy\text{ }khi:\\ x^2=0\\ \Leftrightarrow x=0\\\text{ }Vậy\text{ }A_{\left(Max\right)}=-\dfrac{1}{2}\text{ }khi\text{ }x=0\)
\(Câu\text{ }2:\)
\(\text{a) }B=\dfrac{1}{x}+\dfrac{1}{x+5}+\dfrac{x-5}{x\left(x+5\right)}\\ B=\dfrac{x+5}{x\left(x+5\right)}+\dfrac{x}{\left(x+5\right)x}+\dfrac{x-5}{x\left(x+5\right)}\\ B=\dfrac{x+5+x+x-5}{x\left(x+5\right)}\\ B=\dfrac{3x}{x\left(x+5\right)}\\ B=\dfrac{3}{x+5}\left(\text{*}\right)\)
\(\text{b) }Ta\text{ }có:\text{ }\left|x-1\right|=6\\ \Leftrightarrow\left[{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\\ Ta\text{ }lại\text{ }có:\text{ }B=\dfrac{3}{x+5}\\ \RightarrowĐKCĐ:x+5\ne0\\ \Rightarrow x\ne-5\\ \Rightarrow x=7\text{ }thỏa\text{ }mãn\text{ }với\text{ }điều\text{ }kiện\text{ }của\text{ }biến.\\ x=-5\text{ }không\text{ }thỏa\text{ }mãn\text{ }với\text{ }điều\text{ }kiện\text{ }của\text{ }biến.\\ Thay\text{ }x=7\text{ }vào\text{ }\left(\text{*}\right),ta\text{ }được:\text{ }B=\dfrac{3}{7+5}=\dfrac{3}{12}=\dfrac{1}{4}\\ \text{ }Vậy\text{ }với\text{ }x=7\text{ }thì\text{ }B=\dfrac{1}{4}\\ với\text{ }x=-5\text{ }thì\text{ }B\text{ }không\text{ }có\text{ }giá\text{ }trị.\)
\(\text{c) }Ta\text{ }có:B=\dfrac{3}{x+5}\\ \RightarrowĐể\text{ }B\in Z\\ thì\Rightarrow3⋮x+5\\ \Rightarrow x+5\inƯ_{\left(3\right)}\\ Mà\text{ }Ư_{\left(3\right)}=\left\{\pm1;\pm3\right\}\\ Ta\text{ }lập\text{ }bảng\text{ }xét\text{ }giá\text{ }trị:\)
\(x+5\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(x\) | \(-8\) | \(-6\) | \(-4\) | \(-2\) |
\(\Rightarrow x\in\left\{-8;-6;-4;-2\right\}\\ Vậy\text{ }để\text{ }B\in Z\\ thì x\in\left\{-8;-6;-4;-2\right\}\)
a: \(P=\dfrac{x\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}-\dfrac{x\left(2x+1\right)}{x}+\dfrac{2\left(x-1\right)\left(x+1\right)}{x-1}\)
\(=x^2-x-2x-1+2x+2\)
\(=x^2-x+1\)
b: \(P=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu '=' xảy ra khi x=1/2
a) ĐKXĐ: \(x\ne\mp1\)
\(Q=\dfrac{x^2}{x^4-1}\left(x^2-1\right)-\dfrac{1}{x^2+1}\)
\(Q=\dfrac{x^2}{\left(x^2-1\right)\left(x^2+1\right)}\left(x^2-1\right)-\dfrac{1}{x^2+1}\)
\(Q=\dfrac{x^2}{x^2+1}-\dfrac{1}{x^2+1}=\dfrac{x^2-1}{x^2+1}\)
b) \(Q=0\Rightarrow\dfrac{x^2-1}{x^2+1}=0\\ \Leftrightarrow x^2=1\\ \Leftrightarrow x=\mp1\left(loại\right)\)
Không tồn tại x để Q=0
d) \(Q=\dfrac{x^2-1}{x^2+1}=\dfrac{x^2+1-2}{x^2+1}=1-\dfrac{2}{x^2+1}\)
Ta có: \(x^2\ge0\Leftrightarrow x^2+1\ge1\\ \Leftrightarrow-\dfrac{2}{x^2+1}\ge-\dfrac{2}{1}=-2\\ 1-\dfrac{2}{x^2+1}\ge-1\\ Q\ge-1\)
Vậy GTNN của Q=-1 <=> x=0
\(1.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{|\sqrt{7}+1|-|\sqrt{7}-1|}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
\(3a.x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)-2\left(x-1\right)}{6}< \dfrac{6x-3\left(2x+3\right)+2x+30}{6}\)
\(\Leftrightarrow6x+6-2x+2< 6x-6x-9+2x+30\)
\(\Leftrightarrow6x-2x-2x+6+2+9-30< 0\)
\(\Leftrightarrow2x-13< 0\)
\(\Leftrightarrow x< \dfrac{13}{2}\)
KL...............
\(b.5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)
\(\Leftrightarrow\dfrac{150+6\left(x+4\right)}{30}< \dfrac{30x-15\left(x-2\right)+10\left(x+3\right)}{30}\)
\(\Leftrightarrow150+6x+24< 30x-15x+30+10x+30\)
\(\Leftrightarrow6x-30x+15x-10x+150+24-30-30< 0\)
\(\Leftrightarrow-19x+114< 0\)
\(\Leftrightarrow x>6\)
KL..................
Câu 4 :
Ta có :
\(A=\dfrac{3}{1-x}+\dfrac{4}{x}\)
\(=\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\)
Theo BĐT Bu - nhi a - cốp xki ta có :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\Leftrightarrow\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\dfrac{3\left(1-x\right)}{1-x}}+\sqrt{\dfrac{4x}{x}}\right)^2=\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)
Dấu \("="\) xảy ra khi \(\dfrac{3}{\left(1-x\right)^2}=\dfrac{4}{x^2}\)
\(\Leftrightarrow3x^2=4x^2-8x+4\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Delta=64-16=48>0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)
Vậy GTNN của\(A=7+4\sqrt{3}\) khi \(\left[{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)
sai dề kìa \(\frac{6x+3}{x^3+1}\)mới đúng
ĐK : \(x\ne-1\)
a) rút gọn được \(C=\frac{1}{x^2-x+1}\)
b)\(C=\frac{1}{3}\Rightarrow\frac{1}{x^2-x+1}=\frac{1}{3}\)
\(\Rightarrow x^2-x+1=3\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)=0\\\left(x-2\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\left(Loai\right)\\x=2\left(Nhan\right)\end{cases}}}\)
vậy khi \(C=\frac{1}{3}\)thì x=2
c)\(C=\frac{1}{x^2-x+2}\)
ta có \(x^2-x+2=x^2-2x\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
\(\Rightarrow C=\frac{1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{7}{4}\)
vậy max \(C=\frac{7}{4}\)khi và chỉ khi \(x=\frac{1}{2}\)
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(C=\left(\dfrac{1}{x^2+1}-\dfrac{x+1}{x^4-1}\right):\dfrac{x+1}{x^5+x^4-x-1}\)
\(=\dfrac{x^2-1-x-1}{\left(x^2+1\right)\left(x^2-1\right)}:\dfrac{x+1}{x^4\left(x+1\right)-\left(x+1\right)}\)
\(=\dfrac{x^2-x-2}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)\left(x^4-1\right)}{x+1}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^4-1}{1}\)
=(x-2)(x+1)
b: Để C=0 thì (x-2)(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
c: \(C=\left(x-2\right)\left(x+1\right)=x^2-x-2\)
\(=x^2-x+\dfrac{1}{4}-\dfrac{9}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)