K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,b,c là các số thực đôi một phân biệt

=>\(a-b;b-c;a-c\) đều khác 0

\(a^3+b^3+c^3=3bac\)

=>\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

=>\(\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2ac-2bc\right]=0\)

=>\(\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=0\)

=>\(\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\left(loại\right)\end{matrix}\right.\)

=>a+b+c=0

=>a+b=-c; a+c=-b; b+c=-a

\(P=\dfrac{a+b}{c}\cdot\dfrac{b+c}{a}\cdot\dfrac{c+a}{b}=\dfrac{-c}{c}\cdot\dfrac{-a}{a}\cdot\dfrac{-b}{b}=-1\)

8 tháng 8 2017

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

Ta lại có: 

\(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu = xảy ra khi \(a=b=c\)

Thế vào N ta được

\(N=\frac{a^{2015}+b^{2015}+c^{2015}}{\left(a+b+c\right)^{2015}}=\frac{3a^{2015}}{3^{2015}.a^{2015}}=\frac{1}{a^{2014}}\)

17 tháng 12 2019

Cái này biến đổi dài vl ra í e :>>

Ta có a^3 + b^3 + c^3 -3abc=0 

=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0

=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0

=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0

=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0

=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0

Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0

=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0

=> (a-b)^2 + (b-c)^2 + (c-a)^2=0

Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt

17 tháng 12 2019

thank . Mấy chỗ đó hiểu dc

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)

ta có : \(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2.2.2=8\)

6 tháng 2 2019

o0o I am a studious person o0o: Theo em thì: \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\orbr{\begin{cases}a=b=c\\a+b+c=0\end{cases}}\) chứ ạ?

AH
Akai Haruma
Giáo viên
14 tháng 6 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

14 tháng 8 2015

1, Ta có a^3+b^3+c^3=3abc

-> a^3+b^3+c^3+3a^2b+3ab^2=3abc+3a^2b+3ab^2

-> (a+b)3 + c^3 - 3ab(a+b+c)=0

-> (a+b+c). ((a+b)^2-(a+b).c+c^2)-3ab(a+b+c)=0

-> (a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)=0

Th1: a+b+c=0

->P= a+b/2 . b+c/2 . c+a/2

= (-c)(-a)(-b)/2=-1

TH2 a^2+b^2+c^2-ab-bc-ca=0

->2a^2+2b^2+2c^2-2ab-abc-2ac=0

->(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)=0

-> (a-b)^2+(a-c)^2+(b-c)^2=0

Mà (a-b)^2+(a-c)^2+(b-c)^2>= 0

Dấu = xảy ra (=)a-b=0

                         b-c=0

                          a-c=0

-> a=b=c

->P= 1+a/b+1+b/c+1+c/a=2+2+2= 8

16 tháng 8 2016

bn có thể giải thích phần TH1 ko?

8 tháng 3 2017

GT không hợp lí 

Theo định lí cosi 3 số

a^3+b^3+c^3>=3*canbacba(a^3*b^3*c^3)

<=> a^3+b^3+c^3>=3abc

dấu"=" khi a=b=c

trái Gt a,b,c đôi một khác nhau

12 tháng 3 2017

Bạn sai rồi. Sao ngu vậy. Giải đến thế mà ko làm ra

2 tháng 8 2017

A = a3 + b3 + c- 3abc

= (a+b)3 - 3ab(a+b) + c3 - 3abc

= (a+b+c)(a2 + 2ab + b2 -ac -bc + c2) - 3ab (a+b+c)

=(a+b+c)(a2 + b2 + c2 - ab - bc - ac)

a+ b + c > 0    (dựa giả thiết)

a2 + b2 + c2 - ab - bc - ac > 0    (*)

Chứng minh (*)

\(a^2+b^2+c^2-ab-bc-ac=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\)