Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số ban đầu là \(\overline{ab}\)
Theo đề, ta có:
a=2b và 10a+b-10b-a=36
=>a-2b=0 và a-b=4
=>a=8 và b=4
Gọi chữ số hàng chục là x ( \(x\inℕ^∗\), \(4\le x\le9\))
Chữ số hàng đơn vị là: \(2x-7\)
Số tự nhiên ban đầu có dạng: \(10x+\left(2x-7\right)\)
Số tự nhiên ban đầu viết theo thứ tự ngược lại có dạng: \(10.\left(2x-7\right)+x\)
Nếu viết 2 chữ số ấy theo thứ tự ngược lại thì số mới nhỏ hơn số cũ 27 đơn vị nên ta có phương trình:
\(10.\left(2x-7\right)+x+27=10x+\left(2x-7\right)\)
\(\Leftrightarrow20x-70+x+27=10x+2x-7\)
\(\Leftrightarrow20x+x-10x-2x=-7+70-27\)
\(\Leftrightarrow9x=36\)\(\Leftrightarrow x=4\)( thoả mãn ĐK )
Vậy chữ số cần tìm là: \(41\)
Gọi chữ số ban đầu là ab ( a, b là STN. a#0 a=3b )
Nếu đổi chỗ 2 chữ số của số đó thì được số mới là: ba
Theo bài ra ta có:
ba - ab = 54
=> 10b+a-10a-b=54
=> 9b-9a=54
=) 9(b-a)=54
=> b-a=4
Vì a=3b => Số ab là 93
học tốt
Gọi số tự nhiên có 2 chữ số đã cho là ab \(\left(0\le a;b\le9,a\ne0,a,b\in N\right)\)
Theo giả thiết ta có hệ phương trình sau:
\(\hept{\begin{cases}a+b=14\\\overline{ba}-\overline{ab}=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=14\\\left(10b+a\right)-\left(10a+b\right)=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=14\\9b-9a=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=14\\b-a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=6\\b=8\end{cases}}\)
Vậy số đã cho là 68
Gọi số cần tìm có dạng là \(\overline{ab}\)
Theo đề, ta có hệ: b=2a và 10b+a-10a-b=18
=>2a-b=0 và -9a+9b=18
=>a=2 và b=4
bó 's tay
Gọi số ban đầu là \(\overline{ab}\)
Nếu đổi chỗ hàng chục và hàng đơn vị thì được một số mới lớn hơn số cũ 36 đơn vị nên \(\overline{ba}-\overline{ab}=36\)
=>10b+a-10a-b=36
=>-9a+9b=36
=>a-b=-4(1)
Chữ số hàng đơn vị hơn chữ số hàng chục là 4 đơn vị nên b-a=4
Do đó, ta có: b-a=4
=>b=a+4
=>\(\left(a;b\right)\in\left\{\left(1;5\right);\left(2;6\right);\left(3;7\right);\left(4;8\right);\left(5;9\right)\right\}\)
vậy: Các số cần tìm là 15;26;37;48;59