Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có BM là phân giác
nên \(\dfrac{AM}{AB}=\dfrac{CM}{CB}\)
=>\(\dfrac{AM}{5}=\dfrac{CM}{2}\)
mà AM+CM=AC=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{5}=\dfrac{CM}{2}=\dfrac{AM+CM}{5+2}=\dfrac{5}{7}\)
=>\(AM=5\cdot\dfrac{5}{7}=\dfrac{25}{7}\left(cm\right);CM=2\cdot\dfrac{5}{7}=\dfrac{10}{7}\left(cm\right)\)
b: Ta có: \(\widehat{ABM}=\widehat{MBC}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{ACN}=\widehat{NCB}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABM}=\widehat{MBC}=\widehat{ACN}=\widehat{NCB}\)
Xét ΔABM và ΔACN có
\(\widehat{ABM}=\widehat{ACN}\)
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
=>AM=AN
Xét ΔABC có \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
nên MN//BC
a: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a: Xét ΔMBE vuông tại E và ΔNCF vuông tại F có
MB=CN
\(\widehat{MBE}=\widehat{NCF}\left(=\widehat{ACB}\right)\)
Do đó: ΔMBE=ΔNCF
Suy ra: ME=NF
Xét ΔMEI vuông tại E và ΔNFI vuông tại F có
ME=NF
\(\widehat{EMI}=\widehat{FNI}\)
Do đó: ΔMEI=ΔNFI\(\left(cgv-gnk\right)\)
Suy ra: IE=IF
b: Ta có: CD=CN
mà CN=MB
nên MB=DC
Xét ΔBAC có
\(\dfrac{MB}{BA}=\dfrac{CD}{AC}\)
nên MD//BC
Xét tứ giác BMDC có MD//BC
nên BMDC là hình thang
mà \(\widehat{MBC}=\widehat{DCB}\)
nên BMDC là hình thang cân
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC