Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)
Theo đề, ta có phương trình:
a+1/a=2
\(\Leftrightarrow a+\dfrac{1}{a}=2\)
\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)
=>a=1
=>\(x=\sqrt{4x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)
\(a,ĐK:x,y\ne2\)
Đặt \(\left\{{}\begin{matrix}x-2=a\\y-2=b\end{matrix}\right.\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{3}{a}+\dfrac{2}{b}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{a}+\dfrac{9}{b}=15\\\dfrac{6}{a}+\dfrac{4}{b}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{5}{b}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+3=5\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow x=y=3\left(tm\right)\)
\(b,ĐK:x\ge3;y\ge1\)
Sửa: \(\sqrt{x-3}-\sqrt{y-1}=4\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-3}\ge0\\b=\sqrt{y-1}\ge0\end{matrix}\right.\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}a-2b=2\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3=36\\y-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=39\\y=5\end{matrix}\right.\)
Đặt x+y=a; x-2y=b
=>6/a-3/b=3 và 1/a+7/b=2
=>a=5/3 và b=5
=>x+y=5/3 và x-2y=5
=>x=25/9; y=-10/9
Bài này giải kiểu thông thường thì ngắn chứ cưỡng ép đặt ẩn phụ thì nó ko hay, rất dài như dưới đây:
ĐKXĐ: \(xy>0\)
\(\left\{{}\begin{matrix}\dfrac{\sqrt{2}x+\sqrt{2}y}{\sqrt{xy}}=3\\x-y+xy=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{2\left(x+y\right)^2}{xy}}=3\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2\left(x+y\right)^2}{xy}=9\\x-y+xy=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x-y=u\\xy=v\end{matrix}\right.\) \(\Rightarrow\left(x+y\right)^2=\left(x-y\right)^2+4xy=u^2+4v\)
Hệ trở thành:
\(\left\{{}\begin{matrix}\dfrac{2\left(u^2+4v\right)}{v}=9\\u+v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u^2+8u=9v\\u+v=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2u^2=v\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2u^2=v\\u+2u^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=2u^2\\2u^2+u-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}u=1\Rightarrow v=2\\u=-\dfrac{3}{2}\Rightarrow v=\dfrac{9}{2}\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}u=1\\v=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=1\\xy=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-1\\xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-1\\x\left(x-1\right)=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x-1\\x^2-x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=-2\\x=2\Rightarrow y=1\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}u=-\dfrac{3}{2}\\v=\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=-\dfrac{3}{2}\\xy=\dfrac{9}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x+\dfrac{3}{2}\\x\left(x+\dfrac{3}{2}\right)=\dfrac{9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x+\dfrac{3}{2}\\x^2+\dfrac{3}{2}x-\dfrac{9}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\Rightarrow y=3\\x=-3\Rightarrow y=-\dfrac{3}{2}\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
Đặt \(\dfrac{1}{y-1}=a\), hpt tở thành
\(\left\{{}\begin{matrix}\dfrac{5}{x+1}+a=10\\\dfrac{1}{x-2}+3a=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15}{x+1}+3a=30\left(1\right)\\\dfrac{1}{x-1}+3a=18\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)-\left(2\right)\), ta được:
\(\dfrac{15}{x+1}-\dfrac{1}{x-1}=12\\ \Leftrightarrow\dfrac{15x-15-x-1}{\left(x-1\right)\left(x+1\right)}=12\\ \Leftrightarrow12x^2-12=14x-16\\ \Leftrightarrow12x^2-14x+4=0\\ \Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Với \(x=\dfrac{1}{2}\Leftrightarrow\dfrac{10}{3}+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{10y-7}{3\left(y-1\right)}=10\)
\(\Leftrightarrow30y-30=10y-7\Leftrightarrow y=\dfrac{23}{20}\)
Với \(x=\dfrac{2}{3}\Leftrightarrow3+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{1}{y-1}=7\Leftrightarrow7y-7=1\Leftrightarrow y=\dfrac{8}{7}\)
Vậy \(\left(x;y\right)=\left\{\left(\dfrac{1}{2};\dfrac{23}{20}\right);\left(\dfrac{2}{3};\dfrac{8}{7}\right)\right\}\)