Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)
\(\widehat{OBA}=\widehat{OCD}\)
mà \(\widehat{ODC}=\widehat{OCD}\)
nên \(\widehat{OAB}=\widehat{OBA}\)
hay ΔOAB cân tại O
Bài 1:
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=13(cm)
Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}=6.5\left(cm\right)\)
Bài 2:
a: Xét ΔABC có
X là trung điểm của BC
Y là trung điểm của AB
Do đó: XY là đường trung bình
=>XY//AC và XY=AC/2=3,5(cm)
hay XZ//AC và XZ=AC
b: Xét tứ giác AZBX có
Y là trung điểm của AB
Y là trung điểm của ZX
Do đó: AZBX là hình bình hành
mà \(\widehat{AXB}=90^0\)
nên AZBX là hình chữ nhật
d: Xét tứ giác AZXC có
XZ//AC
XZ=AC
Do đó: AZXC là hình bình hành
2:
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>DE=AH=12cm
b: ΔAHB vuông tại H có HD vuông góc AB
nên AD*AB=AH^2
ΔAHC vuông tại H có HE vuông góc AC
nên AE*AC=AH^2
=>AD*AB=AE*AC
c: góc IAC+góc AED
=góc ICA+góc AHD
=góc ACB+góc ABC=90 độ
=>AI vuông góc ED
4:
a: góc BDH=góc BEH=góc DBE=90 độ
=>BDHE là hình chữ nhật
b: BDHE là hình chữ nhật
=>góc BED=góc BHD=góc A
Xét ΔBED và ΔBAC có
góc BED=góc A
góc EBD chung
=>ΔBED đồng dạng với ΔBAC
=>BE/BA=BD/BC
=>BE*BC=BA*BD
c: góc MBC+góc BED
=góc C+góc BHD
=góc C+góc A=90 độ
=>BM vuông góc ED
a)
<=> \(3x-12x^2+12x^2-6x=9\)
<=> \(-3x=9\)
<=> \(x=-3\)
b)
<=> \(6x-24x^2-12x+24x^2=6\)
<=> \(-6x=6\)
<=> \(x=-1\)
c)
<=> \(6x-4-3x+6=1\)
<=> \(3x+2=1\)
<=> \(x=-\frac{1}{3}\)
d)
<=> \(9-6x^2+6x^2-3x=9\)
<=> \(-3x=0\)
<=> \(x=0\)
e) KO HIỂU ĐỀ
f)
<=> \(4x^2-8x+3-\left(4x^2+9x+2\right)=8\)
<=> \(-17x+1=8\)
<=> \(x=-\frac{7}{17}\)
g)
<=> \(-6x^2+x+1+6x^2-3x=9\)
<=> \(-2x=8\)
<=> \(x=-4\)
h)
<=> \(x^2-x+2x^2+5x-3=4\)
<=> \(3x^2+4x=7\)
<=> \(\orbr{\begin{cases}x=1\\x=-\frac{7}{3}\end{cases}}\)
a. \(3x\left(1-4x\right)+6x\left(2x-1\right)=9\)
\(\Rightarrow3x-12x^2+12x^2-6x=9\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=-3\)
b. \(3x\left(2-8x\right)-12x\left(1-2x\right)=6\)
\(\Rightarrow6x-24x^2-12x+24x^2=6\)
\(\Rightarrow-6x=6\)
\(\Rightarrow x=-1\)
c. \(2\left(3x-2\right)-3\left(x-2\right)=1\)
\(\Rightarrow6x-4-3x+6=1\)
\(\Rightarrow3x+2=1\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=-\frac{1}{3}\)
\(a,x\left(-3x+5\right)+3x\left(x+1\right)-40=0\)
\(\left(x.-3x\right)+\left(5x\right)+3x\left(x+1\right)-40=0\)
\(-3x^2+5x+\left(3x.x\right)+\left(3x.1\right)-40=0\)
\(-3x^2+5x+3x^2+3x-40=0\)
\(\left(-3x^2+3x^2\right)+5x+3x-40=0\)
\(8x-40=0\)
\(8x=0+40=40\)
\(x=40:8=5\)
a) \(x\left(5-3x\right)+3x\left(x+1\right)-40=0\)
\(\Rightarrow5x-3x^2+3x^2+3x-40=0\)
\(\Rightarrow8x-40=0\)
\(\Rightarrow8x=40\)
\(\Rightarrow x=5\)
b) \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Rightarrow48x^2-12x-20x+5+3x-48x^2-7+112x=81\)
\(\Rightarrow83x=83\)
\(\Rightarrow x=1\)
Bài 7:
\(a,A=\dfrac{2a+a-3}{a-3}\cdot\dfrac{\left(a-3\right)\left(a+3\right)}{3}=\dfrac{3\left(a-1\right)\left(a+3\right)}{3}=\left(a-1\right)\left(a+3\right)\\ b,B=\dfrac{b+3-6}{b+3}:\dfrac{b^2-9-b^2+10}{\left(b-3\right)\left(b+3\right)}\\ B=\dfrac{b-3}{b+3}\cdot\left(b-3\right)\left(b+3\right)=\left(b-3\right)^2\)
Bài 8:
\(a,M=\dfrac{4m^2-4mn+n^2}{m^2}:\dfrac{n-2m}{mn}=\dfrac{\left(n-2m\right)^2}{m^2}\cdot\dfrac{mn}{n-2m}=\dfrac{n\left(n-2m\right)}{m}\\ b,N=\dfrac{1}{3}+x:\dfrac{x+3-x}{x+3}=\dfrac{1}{3}+x\cdot\dfrac{x+3}{3}=\dfrac{1+x^2+3x}{3}\)
Bài 8:
b: \(N=\dfrac{1}{3}+\dfrac{x}{\dfrac{x+3-x}{x+3}}=\dfrac{1}{3}+\dfrac{x}{\dfrac{3}{x+3}}=\dfrac{1}{3}+\dfrac{x+3}{3x}=\dfrac{x+x+3}{3x}=\dfrac{2x+3}{3x}\)
Bài 17:
1) \(3^2-x^2=\left(3-x\right)\left(3+x\right)\)
2) \(x^2-36=\left(x-6\right)\left(x+6\right)\)
3) \(y^2-1=\left(y-1\right)\left(y+1\right)\)
4) \(25-y^2=\left(5-y\right)\left(5+y\right)\)
5) \(9x^2-1=\left(3x-1\right)\left(3x+1\right)\)
6) \(\dfrac{1}{25}-4x^2=\left(\dfrac{1}{5}-2x\right)\left(\dfrac{1}{5}+2x\right)\)
7) \(9x^2-y^2=\left(3x-y\right)\left(3x+y\right)\)
8) \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
Bài 18:
1) \(\left(x-5\right)\left(x+5\right)=x^2-25\)
2) \(\left(4-x\right)\left(4+x\right)=16-x^2\)
3) \(\left(x-\dfrac{2}{3}\right)\left(x+\dfrac{2}{3}\right)=x^2-\dfrac{4}{9}\)
4) \(\left(1+2x\right)\left(1-2x\right)=1-4x^2\)
5) \(-\left(2x+3\right)\left(3-2x\right)=\left(2x+3\right)\left(2x-3\right)=4x^2-9\)
6) \(-\left(5x-3\right)\left(3+5x\right)=\left(3-5x\right)\left(3+5x\right)=9-25x^2\)
7) \(-\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)=-\left(9x^2-\dfrac{4}{25}\right)=\dfrac{4}{25}-9x^2\)
8) \(-\left(2x-\dfrac{2}{3}\right)\left(2x+\dfrac{2}{3}\right)=-\left(4x^2-\dfrac{4}{9}\right)=\dfrac{4}{9}-4x^2\)
mn giúp mik vs ạ bài nào cx đc ạ cả 2 thì càng tốt mik cảm ơn vì bài hơi dài nên mon mn thông cảm :)
Câu 106:
a: Xét ΔABC có
P là trung điểm của AB
N là trung điểm của AC
Do đó: PN là đường trung bình của ΔABC
Suy ra: PN//BC
hay PN//HM; QN//HM
Xét tứ giác QNMH có QN//HM
nên QNMH là hình thang
mà \(\widehat{QHM}=90^0\)
nên QNMH là hình thang vuông
b: Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên \(HN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔABC có
M là trung điểm của BC
P là trung điểm của AB
Do đó: MP là đường trung bình của ΔABC
Suy ra: MP//AC và \(MP=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có PN//HM
nên MNPH là hình thang
mà MP=HN
nên MNPH là hình thang cân
bạn đinhr thực sự hâm mộ bạn luôn á cam rơn nhìu nha mong bn sẽ luôn giúp đỡ mik :)
Bài 2:
\(a)2x^2y-\dfrac{1}{4}x^2y+5x^2y-4x^2y\\ =x^2y\cdot\left(2-\dfrac{1}{4}+5-4\right)\\ =x^2y\cdot\left(3-\dfrac{1}{4}\right)\\ =\dfrac{11}{4}x^2y\\ b)5y^3z^2-3y^3z^2+7y^3z^2-6y^3z^2\\ =y^3z^2\cdot\left(5-3+7-6\right)\\ =3y^3z^2\\ c)-4x^3y^4+6x^2y^3+\dfrac{1}{2}x^3y^4-\dfrac{3}{2}x^2y^3\\ =\left(\dfrac{1}{2}x^3y^4-4x^3y^4\right)+\left(6x^2y^3-\dfrac{3}{2}x^2y^3\right)\\ =x^3y^4\left(\dfrac{1}{2}-4\right)+x^2y^3\left(6-\dfrac{3}{2}\right)\\ =-\dfrac{7}{2}x^3y^4+\dfrac{9}{2}x^2y^3\)