K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Z
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
BK
1
K
0
H
3
HT
2
NV
Nguyễn Việt Lâm
Giáo viên
14 tháng 11 2021
\(=\left(x^2-6x+9\right)-4y^2\)
\(=\left(x-3\right)^2-\left(2y\right)^2\)
\(=\left(x-3-2y\right)\left(x-3+2y\right)\)
8 tháng 10 2022
= ( x^2 - 4y^2 ) + ( 9 - 6x)
= [ x^2 - (2y)^2 ] + 3( 3 - 2x )
= (x - 2y)(x + 2y)+ 3(3 - 2x)
Cách 1:
Dùng chức năng SOLVE của máy tính bỏ túi, ta tìm được 2 nghiệm của pt là \(x_1\approx-6,645751311;\text{ }x_2\approx-1,35428689\)
Ta thấy \(x_1.x_2=9;\text{ }x_1+x_2=-8\)
=> x1; x2 là 2 nghiệm của phương trình \(x^2+8x+9=0\), vậy là có nhân tử này.
Nhân tử còn lại thì chia đa thức là ra
Kết quả: \(\left(x^2+8x+9\right)\left(x^2+6x+7\right)\)
Cách 2:
PP hệ số bất định:
Giả sử phân tích được thành \(x^4+14x^3+64x^2+110x+63=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+\left(a+c\right)x^3+\left(b+ac+d\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất hệ số: \(a+c=14;\text{ }b+ac+d=64;\text{ }ad+bc=110;\text{ }bd=63\)
Ta mong muốn phân tích được thành các hệ số nguyên nên cần b, d là các số nguyên
Ta thử lần lượt \(\left(b;d\right)=\left(63;1\right);\left(-63;-1\right);\left(21;3\right);\left(-21;-3\right);\left(9;7\right);\left(-9;-7\right)\)
Thay vô giải hệ ở trên.
Thấy 1 cặp số đẹp là \(a=6;\text{ }b=7;\text{ }c=8;\text{ }d=9\)
Vậy nhân tử là \(\left(x^2+6x+7\right)\left(x^2+8x+9\right)\)
mà tớ cũng ko rành