Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ nói người ta ngu trong khi cứ ngồi đó,giỏi thì làm đi
(x+2)(x2-2x+4)=\(\frac{91}{8}\)
<=>x3+23=\(\frac{91}{8}\)
<=>x3+8=\(\frac{91}{8}\)
<=>x3=\(\frac{91}{8}-8\)
<=>x3=\(\frac{27}{8}\)
<=>x3=\(\left(\frac{3}{2}\right)^3\)
=>x=\(\frac{3}{2}\)
- x4-2x3+10x2-20x=0 =>x3(x-2)+10x(x-2)=0 =>(x-2)(x3+10x)=0 =>x(x-2)(x2+10)=0
=>x=0 hoặc x=2 hoặc x= - căn 10
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(\left(x+2\right)\left(x^2-2x+2^2\right)=x^3+2^3=1399\)
\(x^3+2^3=1399\Rightarrow x^3=1391\)vậy không có giá trị nào thỏa mãn x
(x + 2)(x2 - 2x + 4) = 1339
x3 + 8 = 1339
x3 = 1331
x3 = 113
x = 11