K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

\(\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}=\frac{x}{3}+\frac{x}{5}+\frac{x}{2017}\)

\(\Rightarrow x.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}\right)=x.\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{2017}\right)\)

Vì \(\frac{1}{2}>\frac{1}{3};\frac{1}{4}>\frac{1}{5};\frac{1}{2016}>\frac{1}{2017}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}>\frac{1}{3}+\frac{1}{5}+\frac{1}{2017}\)

=> x = 0

Vậy x = 0

4 tháng 10 2016

\(\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}=\frac{x}{3}+\frac{x}{5}+\frac{x}{2017}\)

\(\Rightarrow\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}-\frac{x}{3}-\frac{x}{5}-\frac{x}{2017}=0\)

\(\Rightarrow x\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}-\frac{1}{3}-\frac{1}{5}-\frac{1}{2017}\right)=0\)

\(\Rightarrow x=0\).Do \(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}-\frac{1}{3}-\frac{1}{5}-\frac{1}{2017}\ne0\)

Vậy x=0

13 tháng 8 2020

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x + y + z khác 0)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\hept{\begin{cases}\frac{y+z+1}{x}=2\\\frac{x+z+2}{y}=2\\\frac{x+y-3}{z}=2\end{cases}}\) => \(\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{cases}}\) => \(\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}}\)=> \(\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

Khi đó: A = \(2016\cdot\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}-\left(\frac{5}{6}\right)^{2017}=1008\)

13 tháng 8 2020

Ta có \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

                                                                                                                 \(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khi đó \(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

Lại có \(\frac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow x+y+z+1=3x\Rightarrow\frac{1}{2}+1=3x\Rightarrow3x=\frac{3}{2}\)

=> x = 1/2 

Lại có \(\frac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow x+y+z+2=3y\Rightarrow\frac{1}{2}+2=3y\Rightarrow3y=\frac{5}{2}\)

=> y = 5/6

Lại có x + y + z = 1/2

=> 1/2 + 5/6 + z = 1/2

=> 5/6 + z = 0

=> z = -5/6

Khi đó A = 2016X + y2017 + z2017

= 2016.1/2 + (5/6)2017 - (5/6)2017

= 1008

Vậy A = 1008

a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2002}{2}\)

\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

Vậy : \(x=-2020\)

Chúc bạn học tốt !!

13 tháng 8 2019

a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\\ \left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\\ \frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\\ \frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\\ \left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\\ \Rightarrow x+2020=0\\ \Rightarrow x=-2020\)

Vậy x = -2020

b) \(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\\ \left(\frac{x+2015}{5}-1\right)+\left(\frac{x+2016}{6}-1\right)=\left(\frac{x+2017}{7}-1\right)+\left(\frac{x+2018}{8}-1\right)\\ \frac{x+2010}{5}+\frac{x+2010}{6}=\frac{x+2010}{7}+\frac{x+2010}{8}\\ \frac{x+2010}{5}+\frac{x+2010}{6}-\frac{x+2010}{7}-\frac{x+2010}{8}=0\\ \left(x+2010\right)\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\\ \Rightarrow x+2010=0\\ \Rightarrow x=-2010\)

Vậy x = -2010

DD
11 tháng 8 2021

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)

1 tháng 7 2017

Ta có : \(\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}=\frac{x}{3}+\frac{x}{5}+\frac{x}{2017}\)

\(\Rightarrow\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}-\frac{x}{3}-\frac{x}{5}-\frac{x}{2017}=0\)

\(\Leftrightarrow x\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}-\frac{1}{3}-\frac{1}{5}-\frac{1}{2017}\right)\)

Vì : \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}-\frac{1}{3}-\frac{1}{5}-\frac{1}{2017}\right)\ne0\)

Nên x = 0

1 tháng 7 2017

\(\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}=\frac{x}{3}+\frac{x}{5}+\frac{x}{2017}\)

 \(\Rightarrow x.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}\right)=x.\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{2017}\right)\)

\(\Rightarrow x.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}\right)-x.\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{2017}\right)\)

\(\Rightarrow x.\left[\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}\right)-\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{2017}\right)\right]=0\)

\(\Rightarrow x=0\)\(\left(vi\left[\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}\right)-\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{2017}\right)\right]\right)\ne0\)

11 tháng 4 2018

Nguyễn Tiến Đạt

a)\(|3x-5|=|x+2|\)

=> Ta có 2 trường hợp

*) TH1: 3x-5=x+2

=>3x-x=2+5

=>2x=7

=>x=7:2\(\Rightarrow x=\frac{7}{2}\)

*)TH2: -3x+5=x+2

\(\Rightarrow5-3x=x+2\)

\(\Rightarrow5-2=x+3x\)

\(\Rightarrow3=4x\)

\(\Rightarrow x=3:4\Rightarrow x=\frac{3}{4}\)

Vậy \(x\in\left\{\frac{7}{2};\frac{3}{4}\right\}\)

8 tháng 7 2017

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)

\(\Leftrightarrow x=-2020\)

1 tháng 8 2017

khó lắm

bây h thì bạn giải đc chưa

15 tháng 3 2020

Tham khảo :

https://olm.vn/hoi-dap/detail/246811967549.html

15 tháng 3 2020

\(\frac{x+2}{2017}+\frac{x+3}{2016}+\frac{x+4}{2015}+\frac{x+5}{1007}+\frac{x+2074}{11}=0\)

\(\Leftrightarrow\frac{x+2}{2017}+1+\frac{x+3}{2016}+1+\frac{x+4}{2015}+1+\frac{x+5}{1007}+2+\frac{x+2074}{11}-5=0\)

\(\Leftrightarrow\frac{x+2019}{2017}+\frac{x+2019}{2016}+\frac{x+2019}{2015}+\frac{x+2019}{1007}+\frac{x+2019}{11}=0\)

\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1007}+\frac{1}{11}\right)=0\)

\(\Leftrightarrow\left(x+2019\right)=0vì\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1007}+\frac{1}{11}\right)\ne0\)

\(\Leftrightarrow x=-2019\)

13 tháng 7 2016

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\frac{12\left(x+2015\right)}{60}+\frac{15\left(x+2016\right)}{60}=\frac{20\left(x+2017\right)}{60}+\frac{30\left(x+2018\right)}{60}\)

\(\Rightarrow12x+24180+15x+30240=20x+40340+30x+60540\)

\(\Leftrightarrow-23x=22460\Leftrightarrow x=-\frac{22460}{23}\)

13 tháng 7 2016

\(-23x=46460\Leftrightarrow x=-2020\)