K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

D là j?

20 tháng 3 2022

a,b,c,d á

Chọn đáp án á

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

4 tháng 11 2023

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

4 tháng 11 2023

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

14 tháng 9 2015

Vì |1/2 - x| > 0

=> 0,6 + |1/2 - x| > 0,6

=> A > 0,6

Dấu "=" xảy ra

<=> 1/2 - x = 0

<=> x = 1/2

KL: Amin = 0,6 <=> x = 1/2

Vì |2x + 2/3| > 0

=> 2/3 - |2x + 2/3| < 2/3

=> B < 2/3

Dấu "=" xảy ra

<=> 2x + 2/3 = 0

<=> 2x = -2/3

<=> x = -1/3

KL: Bmax = 2/3 <=> x = -1/3

(x-  2)2 + 1 \(\ge1\)

=> đề \(\le-2\)

Vậy min là -2 khi x = 2

11 tháng 7 2023

a) \(A=\dfrac{3}{x-1}\)

Điều kiện \(|x-1|\ge0\)

\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)

\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)

b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)

 

5 tháng 2 2018

Để \(\frac{2}{1-5\left(x-2\right)^2}\) đạt giá trị nhỏ nhất

\(\Leftrightarrow1-5\left(x-2\right)^2\) đạt giá trị lớn nhất

Vì \(\left(x-2\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow1-5\left(x-2\right)\le1\left(\forall x\in Z\right)\)

\(\Rightarrow\frac{2}{1-5\left(x-2\right)^2}\ge\frac{2}{1}=2\)

Vậy GTNN của biểu thức là 2 <=> x - 2 = 0

                                                => x = 2

15 tháng 9 2016

T/C của gttđ là >= 0 nên 

a) GTNN = -4

b) GTLN = 2

c) GTNN = 2