K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

Phương trình hoành độ giao điểm

x3+2mx2+3(m-1)x+2  =-x+2 hay    x(x2+2mx+3(m-1))=0  

suy ra x=0 hoặc x2+2mx+3(m-1)=0    (1)

Đường thẳng d cắt (C)  tại ba điểm phân biệt khi và chỉ khi phương trình (1)  có hai nghiệm phân biệt khác 0

⇔ m 2 - 3 m + 3 > 0 m - 1 ≠ 0 ⇔ ∀ m m ≠ 1 ⇔ m ≠ 1

Khi đó ta có: C( x; -x1+2) ; B(x; -x2+2)  trong đó x; x2 là nghiệm của (1) ; nên theo Viet thì  x 1 + x 2 = - 2 m x 1 x 2 = 3 m - 3

Vậy 

C B → = ( x 2 - x 1 ; - x 2 + x 1 ) ⇒ C B = 2 ( x 2 - x 1 ) 2 = 8 ( m 2 - 3 m + 3 )

d ( M ; ( d ) ) = - 3 - 1 + 2 2 = 2

Diện tích tam giác MBC bằng khi và chỉ khi

Chọn B.

12 tháng 10 2019

Phương trình hoành độ giao điểm của (C)  và đường thẳng d:

2 x + 1 x - 1 = x + m ( x ≠ 1 ) ⇔ x 2 + ( m - 3 ) x - m - 1 = 0     ( 1 )

Khi đó  cắt (C)  tại hai điểm phân biệt  A: B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác -1 

⇔ ( m - 3 ) 2 + 4 ( m + 1 ) > 0 1 2 + ( m - 3 ) - m - 1 ≠ 0 ⇔ m 2 - 2 m + 13 > 0 - 1 ≠ 0  luôn đúng

Gọi A( x; x1+m) ; B( x; x2+m)  trong đó x; x2 là nghiệm của (1) , theo Viet ta có 

x 1 + x 2 = 3 - m x 1 x 2 = - m - 1

Gọi I ( x 1 + x 2 2 ; ( x 1 + x 2 + 2 m 2 )   là trung điểm của AB, suy ra I ( 3 - m 2 ; 3 + m 2 )  , nên

C I → ( - 2 - 3 - m 2 ; 5 - 3 + m 2 )  

⇒ C I = 1 2 ( m - 7 ) 2 + ( 7 - m ) 2 .

Mặt khác A B → = ( x 2 - x 1 ;   x 2 - x 1 )

⇒ A B = 2 ( x 2 - x 1 ) 2 = 2 ( m 2 - 2 m + 13 ) 2

Vậy tam giác ABC  đều khi và chỉ khi

NV
4 tháng 8 2021

Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)

Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn

Ta cần tìm B, C sao cho chi vi ABC lớn nhất

Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)

Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\) 

Dấu "=" xảy ra khi tam giác ABC đều

\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)

Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)

Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)

\(\Rightarrow m=-1\)

27 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(\frac{-x+m}{x+2}=\frac{1-2x}{2}\) với x khác -2

\(\frac{-x+m}{x+2}=\frac{1-2x}{2}\Leftrightarrow\frac{-2x+2m}{2\left(x+2\right)}=\frac{\left(1-2x\right)\left(x+2\right)}{2\left(x+2\right)}\Leftrightarrow-2x+2m=\left(1-2x\right)\left(x+2\right)\Leftrightarrow-2x+2m=x-2x^2+2-4x\Leftrightarrow2x^2+x+2m-2=0\)

để đt d cắt đồ thị hàm số tại 2 điểm pt thì pt trên có 2 nghiệm phân biệt khác -2

làm tương tự như câu dưới......

1 tháng 2 2017

sao ko giải tiêp luôn đi

19 tháng 12 2021

Chọn B

19 tháng 1 2022

Hỏi mãi chiếm hết cả web ko trả lời nữa 

 

22 tháng 7 2018

23 tháng 3 2017

21 tháng 11 2023

Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.

Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.

Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.

Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).

Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).

Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.

Vậy, đáp án là B. m = 2.

22 tháng 4 2018