K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

NV
22 tháng 3 2022

\(M=\left|3x-2\right|+\left|3x-6\right|=\left|3x-2\right|+\left|6-3x\right|\ge\left|3x-2+6-3x\right|=4\)

\(M_{min}=4\) khi \(\dfrac{3}{2}\le x\le2\)

VT
18 tháng 12 2022

\(A=\left|x-1\right|+\left|x+3\right|=\left|1-x\right|+\left|x+3\right|\)

\(A\ge\left|1-x+x+3\right|=4\)

Vậy giá trị nhỏ nhất của biểu thức A là 4.

28 tháng 8 2017

Huhu, mik không biết giải mong bạn thông cảm!

28 tháng 8 2017

câu B bài cuối là D= 1 phần 2|x-1|+3 nha mọi ng

NM
16 tháng 12 2020

Ta có hai trường hợp như sau :

TH1

\(x-2016\ge0\Leftrightarrow x\ge2016\) thì \(A=x-2016+x-1=2x-2017\ge2.2016-2017=2015\)

TH2

\(x-2016\le0\Leftrightarrow x\le2016\) thì \(A=2016-x+x-1=2015\)

vì vậy GTNN của A=2015

dấu bằng xảy ra khi \(x\le2016\)