K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2015

vì x^4 >= 0 vs mọi x

x^2 >= 0 vs mọi x

=> 3x^4+4x^2-2 >= -2

NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

22 tháng 8 2016

a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4

 Dấu bằng xảy ra <=>x+1=0 <=>x=-1

22 tháng 8 2016

\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)

Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy giá trị nhỏ nhất của A là 4 khi x= -1

11 tháng 12 2016

|x + 2| + |x + 5| + |x - 7| + |x - 8|

= |x + 2| + |x + 5| + |7 - x| + |8 - x|

\(\ge\)|x + 2 + x + 5 + 7 - x + 8 - x| = 22

23 tháng 6 2018

MẶC DÙ TA CÓ A>HOẶC =0,,NHƯNG CHƯA THỂ KẾT LUẬN ĐƯỢC MIN CỦA A=0 VÌ KO TỒN TẠI  GIÁ TRỊ NÀO CỦA X ĐỂ A=0

\(\Leftrightarrow E=x^2-8x+16+4x^2-4x+1\)

\(\Leftrightarrow E=5x^2-12x+17\)

\(\Leftrightarrow E=5\left(x-\frac{6}{5}\right)^2+\frac{49}{5}\ge\frac{49}{5}\)

vậy GTNN của E=49/5 tại x=6/5

27 tháng 9 2020

Ta có:

\(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy \(Min_C=2\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

23 tháng 1 2016

\(A=2\sqrt{x}+x+12\)

\(=x+2\sqrt{x}+1+11\)

\(=\left(\sqrt{x}+1\right)^2+11\)

Vì  \(\left(\sqrt{x}+1\right)^2\ge0\Rightarrow\left(\sqrt{x}+1\right)^2+11\ge11\)

Vậy GTNN của A là 11