K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

Đáp án: D

Điều kiện xác định của phân thức:   x   ≠   - 1

Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8

Để Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 nguyên ⇒ x + 1 là ước của -1 hay x + 1 ∈ {-1;1}

Với x + 1 = -1 ⇔ x = - 2 (thỏa mãn ĐKXĐ)

Với x + 1 = 1 ⇔ x = 0 (thỏa mãn ĐKXĐ)

Vậy đáp án D là đáp án đúng

28 tháng 3 2017

Đáp án: C

ĐKXĐ: x   ≠   - 1 3

Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8

Để Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 nguyên ⇒ 3x + 1 là ước của 9 hay 3x + 1 ∈ {-9;-3;-1;1;3;9}

Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8

22 tháng 8 2018

Đáp án: A

ĐKXĐ:  x   ≠   - 1 2

Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8

Để Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 nguyên ⇒ 2x + 1 là ước của -7 hay 2x + 1 ∈ {-7;-1;1;7}

Với 2x + 1 = -7 ⇔ 2x = - 8 ⇔ x = -4 (thỏa mãn ĐKXĐ)

Với 2x + 1 = -1 ⇔ 2x = - 2 ⇔ x = -1 (thỏa mãn ĐKXĐ)

Với 2x + 1 = 1 ⇔ 2x = 0 ⇔ x = 0 (thỏa mãn ĐKXĐ)

Với 2x + 1 = 7 ⇔ 2x = 6⇔ x = 3 (thỏa mãn ĐKXĐ)

Vậy đáp án A là đáp án đúng

13 tháng 8 2020

a) Với giá trị của x thì phân thức được xác định là : \(x^2-1\ne0\)

=> \(x^2\ne\pm1\)

b) Rút gọn A : \(A=\frac{x^2+2x+1}{x^2-1}=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)

c) Tại x = -2 thì \(A=\frac{\left(-2\right)+1}{\left(-2\right)-1}=\frac{-1}{-3}=\frac{1}{3}\)

d) Ta có : \(A=\frac{x^2+2x+1}{x^2-1}=\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)

=> \(2⋮x-1\)=> x - 1 \(\in\)Ư(2) = { \(\pm1;\pm2\)}

+) x - 1 = 1 => x = 2 ; x - 1 = -1 => x = 0

+) x - 1 = 2 => x = 3 ; x - 1 = -2 => x = -1

Vậy : ....

13 tháng 8 2020

a) Phân thức xác định 

\(\Leftrightarrow x^2-1\ne0\)

\(\Leftrightarrow x\ne\pm1\)

Vậy với \(x\ne\pm1\)thì giá trị của phân thức đã cho xác định.

b) \(A=\frac{x^2+2x+1}{x^2-1}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x+1}{x-1}\)

c) x = -2 ( thỏa mãn đkxđ )

Vậy \(A=\frac{-2+1}{-2-1}=\frac{-1}{-3}=\frac{1}{3}\)

d)  A có giá trị nguyên 

\(\Leftrightarrow\frac{x+1}{x-1}\)có giá trị nguyên 

\(\Leftrightarrow\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)có giá trị nguyên

\(\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x=\left\{2;3;0\right\}\)

18 tháng 2 2021

phân thức được xác định ⇔ x2 - 1 ≠ 0 ⇔ x ≠ \(\left\{-1;1\right\}\)

\(\dfrac{3x+3}{x^2-1}=-2\) 

=> 3x + 3 = -2x2 + 2

=> 2x2 + 3x + 1 = 0

=> (2x+1)(x+1) = 0

=> x = -1/2 (thỏa mãn) hoặc x = -1 (loại)

Vậy, để phân thức có giá trị bằng  –2 thì x = -1/2.

 

 

 

18 tháng 2 2021

\(\dfrac{3x+3}{x^2-1}\)=\(\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)  (x khác -1 và x khác 1)

\(\dfrac{3}{x-1}\)

=> Phân thức ban đầu có giá trị nguyên ⇔ 3 chia hết cho x-1

=> x-1 ∈\(\left\{-3;-1;1;3\right\}\)

=> x ∈\(\left\{-2;0;2;4\right\}\)

Vậy, để phân thức có giá trị là số nguyên.thì x ∈\(\left\{-2;0;2;4\right\}\).

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b) Ta có: \(\dfrac{3x+3}{x^2-1}\)

\(=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{3}{x-1}\)

Để phân thức có giá trị bằng -2 thì \(\dfrac{3}{x-1}=-2\)

\(\Leftrightarrow x-1=\dfrac{-3}{2}\)

hay \(x=-\dfrac{1}{2}\)

Vậy: Để phân thức có giá trị bằng -2 thì \(x=-\dfrac{1}{2}\)

c) Để phân thức có giá trị là số nguyên thì \(3⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(3\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Kết hợp ĐKXĐ, ta được: 

\(x\in\left\{2;0;4;-2\right\}\)

Vậy: Để phân thức có giá trị là số nguyên thì \(x\in\left\{2;0;4;-2\right\}\)

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3