Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tính
a) \(1:\) \(\frac{99}{100}:\frac{98}{97}\)\(:\frac{97}{96}:...:\)\(\frac{2}{3}:\frac{1}{2}\)
b) \(\left(\frac{7}{20}+\frac{11}{15}-\frac{15}{12}\right)\)\(:\)\(\left(\frac{11}{20}-\frac{26}{45}\right)\)
c) \(\frac{5-\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}{8-\frac{8}{3}+\frac{8}{9}-\frac{8}{27}}\)\(:\)\(\frac{15-\frac{15}{11}+\frac{15}{121}}{16-\frac{16}{11}+\frac{16}{11}}\)
d) \(\frac{\frac{1}{9}-\frac{5}{6}-4}{\frac{7}{12}-\frac{1}{36}-10}\)
Bài 2: Tìm x:
a) \(\left(x+\frac{1}{4}-\frac{1}{3}\right)\)\(:\)\(\left(2+\frac{1}{6}-\frac{1}{4}\right)\)\(=\frac{7}{46}\)
b) \(\frac{13}{15}-\left(\frac{13}{21}+x\right).\frac{7}{12}=\frac{7}{10}\)
Bài 3:
Tìm tổng các số nghịch đảo của các số 10; 40; 88; 154; 238; 340.
Bài 4:
Một ô tô chạy trong \(\frac{4}{5}\)giờ được 32 km. Ô tô chạy quãng đường AB mất \(3\frac{1}{2}\)giờ. Tính vận tốc của ô tô và độ dài quãng đường AB.
Bài 5:
Một người đi từ A đến B mất 45 phút trong khi đó người thứ 2 đi từ B về A mất 30 phút. Nếu hai người cùng khởi hành thì sau bao nhiêu phút thì gặp nhau?
Bài 6:
Cho a; b; c; \(\in\)N*. Chứng tỏ rằng \(\frac{a+b}{c}\)\(+\)\(\frac{b+c}{a}+\frac{c+a}{b}\)\(\ge\)b
\(\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}=\frac{x}{3}+\frac{x}{5}+\frac{x}{2017}\)
\(\Leftrightarrow\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}-\frac{x}{3}-\frac{x}{5}-\frac{x}{2017}=0\)
\(\Leftrightarrow x\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}-\frac{1}{3}-\frac{1}{5}-\frac{1}{2017}\right)=0\)
\(\Leftrightarrow x=0\).Do \(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}-\frac{1}{3}-\frac{1}{5}-\frac{1}{2017}\ne0\)
Vậy giá trị x thỏa mãn là x=0
a, để p\s x+y\x-y có GTLN thì tử lớn nhất và mẫu bé nhất
ta chọn x=30 và y= 29
thìGTLN của nó = 59
tương tự câu b tử nhỏ nhất và mẫu lớn nhất
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)