\(y=x+sin2x\) trên \(\left(0;\pi\right)\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
5 tháng 6 2021

\(y=x+sin\left(2x\right)\)

\(y'=1+2cos\left(2x\right)\)

\(y'=0\Leftrightarrow1+cos\left(2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{3}\\x=\frac{2\pi}{3}\end{cases}}\)vì \(x\in\left(0,\pi\right)\).

\(y\left(\frac{\pi}{3}\right)=\frac{\pi}{3}+\frac{\sqrt{3}}{2},y\left(\frac{2\pi}{3}\right)=\frac{2\pi}{3}-\frac{\sqrt{3}}{2}\)

\(y\left(\frac{\pi}{3}\right)>y\left(\frac{2\pi}{3}\right)\)ta chọn D

26 tháng 3 2016

a) \(\sqrt[3]{10}=\sqrt[15]{10^5}>\sqrt[15]{20^3=\sqrt[5]{20}}\)

b) Vì \(\frac{1}{e}<1\) và \(\sqrt{8}-3<0\) nên \(\left(\frac{1}{e}\right)^{\sqrt{8}-3}>1\)

c) Vì \(\frac{1}{8}<1\) và \(\pi>3.14\) nên \(\left(\frac{1}{8}\right)^{\pi}<\left(\frac{1}{8}\right)^{3,14}\)

d)  Vì \(\frac{1}{\pi}<1\)  và \(1,4<\sqrt{2}\)  nên \(\left(\frac{1}{\pi}\right)^{1,4}>\pi^{-\sqrt{2}}\)

 
26 tháng 3 2016

a) \(A=\frac{a^{\frac{5}{2}}\left(a^{\frac{1}{2}}-a^{\frac{-3}{2}}\right)}{a^{\frac{1}{2}}\left(a^{\frac{-1}{2}}-a^{\frac{3}{2}}\right)}=\frac{a^3-a}{1-a^2}=-a\)

Do đó : \(A=-\left(\pi-3\sqrt{2}\right)=3\sqrt{2}-\pi\)

b) Rút gọn B ta có :

\(B=\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)\left[\left(a^{\frac{1}{3}}\right)^2+\left(b^{\frac{1}{3}}\right)^2\right]=\left(a^{\frac{1}{3}}\right)^3+\left(b^{\frac{1}{3}}\right)^3=a+b\)

Do đó :

\(B=\left(7-\sqrt{2}\right)+\left(\sqrt{2}+3\right)=10\)

13 tháng 5 2016

a. Ta có : \(\begin{cases}\left(0,01\right)^{-\sqrt{3}}=\left(10^{-2}\right)^{-\sqrt{3}}=\left(10\right)^{2\sqrt{3}};1000=10^3\\2\sqrt{3}>3\end{cases}\)

\(\Rightarrow\left(0,01\right)^{-\sqrt{3}}>1000\)

 

b. Ta có :

                   \(\frac{\pi}{2}>1\) và \(2\sqrt{2}< 3\)

               \(\Rightarrow\left(\frac{\pi}{2}\right)^{2\sqrt{2}}< \left(\frac{\pi}{2}\right)^3\)

22 tháng 3 2016

\(I_1=3\int_1^2x^2dx+\int_1^2\cos xdx+\int_1^2\frac{dx}{x}=x^3\)\(|^2 _1\)+\(\sin x\)\(|^2_1\) +\(\ln\left|x\right|\)\(|^2_1\)

    \(=\left(8-1\right)+\left(\sin2-\sin1\right)+\left(\ln2-\ln1\right)\)

     \(=7+\sin2-\sin1+\ln2\)

22 tháng 3 2016

b) \(I_2=4\int_1^2\frac{dx}{x}-5\int_1^2x^4dx+2\int_1^2\sqrt{x}dx\)

         \(=4\left(\ln2-\ln1\right)-\left(2^5-1^5\right)+\frac{4}{3}\left(2\sqrt{2}-1\sqrt{1}\right)\)

         \(=4\ln2+\frac{8\sqrt{2}}{3}-32\frac{1}{3}\)

NV
2 tháng 8 2020

Đặt \(x=\frac{\sqrt{2}}{2}sint\Rightarrow dx=\frac{\sqrt{2}}{2}cost.dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=\frac{1}{2}\Rightarrow t=\frac{\pi}{4}\end{matrix}\right.\)

\(\int\limits^{\frac{1}{2}}_0f\left(\sqrt{1-2x^2}\right)dx=\frac{\sqrt{2}}{2}\int\limits^{\frac{\pi}{4}}_0f\left(cost\right).costdt=\frac{\sqrt{2}}{2}\int\limits^{\frac{\pi}{4}}_0f\left(cosx\right)cosxdx=\frac{7}{6}\)

\(\Rightarrow J=\int\limits^{\frac{\pi}{4}}_0f\left(cosx\right).cosx.dx=\frac{7\sqrt{2}}{6}\)

Đặt \(\left\{{}\begin{matrix}u=f\left(cosx\right)\\dv=cosx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-sinx.f'\left(cosx\right)dx\\v=sinx\end{matrix}\right.\)

\(\Rightarrow J=sinx.f\left(cosx\right)|^{\frac{\pi}{4}}_0+\int\limits^{\frac{\pi}{4}}_0f'\left(cosx\right)sin^2x.dx=\frac{\sqrt{2}}{2}+I\)

\(\Rightarrow I=\frac{7\sqrt{2}}{6}-\frac{\sqrt{2}}{2}=\frac{2\sqrt{2}}{3}\)

26 tháng 3 2016

a) Ta có cơ số  \(a=0,3<1\) và \(3,15>\pi>\frac{2}{3}>0,5\)

Nên thứ tự tăng dần là :

\(0,3^{3,15};0,3^{\pi};0,3^{\frac{2}{3}};0,3^{0,5}\)

b) Vì số mũ \(\pi>0\) nên hàm số lũy thừa \(y=x^{\pi}\) luôn đồng biến. Mặt khác :

\(\frac{1}{\sqrt{2}}<\sqrt{2}<1,8<\pi\)

Nên thứ tự tăng dần là :

\(\left(\frac{1}{\sqrt{2}}\right)^{\pi};\sqrt{2^{\pi}};1,8^{\pi};\pi^{\pi}\)

4.Cho hàm số f(x) là hàm số chẵn và liên tục trên R thỏa mãn \(\int_{-1}^1f\left(x\right)dx\)=2. Khi đó giá trị tích phân \(\int_0^1f\left(x\right)dx\) là : A.1 B.2 C.\(\frac{1}{4}\) D.\(\frac{1}{2}\) 5.Cho f(x) liên tục trên [0;10] thỏa mãn \(\int_0^{10}f\left(x\right)dx=7\), \(\int_2^6f\left(x\right)dx=3\). Khi đó giá trị của P = \(\int_0^2f\left(x\right)dx+\int_6^{10}f\left(x\right)dx\) có giá trị là: A.1 B.2 C.4 D.3 6.Cho hình...
Đọc tiếp

4.Cho hàm số f(x) là hàm số chẵn và liên tục trên R thỏa mãn \(\int_{-1}^1f\left(x\right)dx\)=2. Khi đó giá trị tích phân \(\int_0^1f\left(x\right)dx\) là : A.1 B.2 C.\(\frac{1}{4}\) D.\(\frac{1}{2}\)

5.Cho f(x) liên tục trên [0;10] thỏa mãn \(\int_0^{10}f\left(x\right)dx=7\), \(\int_2^6f\left(x\right)dx=3\). Khi đó giá trị của P = \(\int_0^2f\left(x\right)dx+\int_6^{10}f\left(x\right)dx\) có giá trị là: A.1 B.2 C.4 D.3

6.Cho hình phẳng S giới hạn bởi Ox và y =\(\sqrt{1-x^2}\). Thể tích của khối tròn xoay khi quay S quanh Ox là: A.\(\frac{3}{2}\pi\) B.\(\frac{3}{4}\pi\) C.\(\frac{4}{3}\pi\) D.\(\frac{2}{3}\pi\)

7.Tính tích phân I = \(\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\frac{\sin^2x}{\sin3x}dx\) ta được kết quả I = \(\frac{1}{a}ln\left|b+\sqrt{3c}\right|\) với a, b, c \(\in Z\). Giá trị của a + 2b + 3c là: A.5 B.2 C.8 D.3

8.Cho hàm số y = f(x) có đạo hàm f'(x) = \(\frac{1}{2x-1}\), f(1)=1 thì f(5) có giá trị bằng: A.ln2 B.ln2 + 1 C.ln3 D.ln3 + 1

2
NV
28 tháng 3 2019

Câu 6:

Hoành độ giao điểm: \(\sqrt{1-x^2}=0\Leftrightarrow x=\pm1\)

\(\Rightarrow V=\pi\int\limits^1_{-1}\left(1-x^2\right)dx=\frac{4}{3}\pi\)

// Hoặc là tư duy theo 1 cách khác, biến đổi pt ban đầu ta có:

\(y=\sqrt{1-x^2}\Leftrightarrow y^2=1-x^2\Leftrightarrow x^2+y^2=1\)

Đây là pt đường tròn tâm O bán kính \(R=1\Rightarrow\) khi quay quanh Ox ta sẽ được một mặt cầu bán kính \(R=1\Rightarrow V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi\)

Câu 7: Về bản chất, đây là 1 con tích phân sai, không thể tính được, do trên miền \(\left[\frac{\pi}{6};\frac{\pi}{2}\right]\) hàm dưới dấu tích phân không xác định tại \(x=\frac{\pi}{3}\)\(x=\frac{2\pi}{3}\), nhưng nhắm mắt làm ngơ với lỗi ra đề sai đó và ta cứ mặc kệ nó, không quan tâm cứ máy móc áp dụng thì tính như sau:

Biến đổi biểu thức dưới dấu tích phân 1 chút trước:

\(\frac{sin^2x}{sin3x}=\frac{sin^2x}{3sinx-4sin^3x}=\frac{sinx}{3-4sin^2x}=\frac{sinx}{3-4\left(1-cos^2x\right)}=\frac{sinx}{4cos^2x-1}\)

\(\Rightarrow I=\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{6}}\frac{sinx.dx}{4cos^2x-1}\Rightarrow\) đặt \(cosx=t\Rightarrow sinx.dx=-dt\)

\(\Rightarrow I=\int\limits^0_{\frac{\sqrt{3}}{2}}\frac{-dt}{4t^2-1}=\int\limits^{\frac{\sqrt{3}}{2}}_0\frac{dt}{\left(2t-1\right)\left(2t+1\right)}=\frac{1}{2}\int\limits^{\frac{\sqrt{3}}{2}}_0\left(\frac{1}{2t-1}-\frac{1}{2t+1}\right)dt\)

\(I=\frac{1}{4}ln\left|\frac{2t-1}{2t+1}\right|^{\frac{\sqrt{3}}{2}}_0=\frac{1}{4}ln\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)=\frac{1}{4}ln\left(2-\sqrt{3}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\\c=-1\end{matrix}\right.\) \(\Rightarrow a+2b+3c=5\)

Câu 8:

\(f\left(x\right)=\int\frac{1}{2x-1}dx=\frac{1}{2}\int\frac{d\left(2x-1\right)}{2x-1}=\frac{1}{2}ln\left|2x-1\right|+C\)

\(f\left(1\right)=1\Leftrightarrow\frac{1}{2}ln1+C=1\Rightarrow C=1\)

\(\Rightarrow f\left(x\right)=\frac{1}{2}ln\left|2x-1\right|+1\Rightarrow f\left(5\right)=\frac{1}{2}ln9+1=ln3+1\)

NV
28 tháng 3 2019

Câu 4:

\(I=\int\limits^1_{-1}f\left(x\right)dx=\int\limits^0_{-1}f\left(x\right)dx+\int\limits^1_0f\left(x\right)dx\)

Do \(f\left(x\right)\) là hàm chẵn \(\Rightarrow f\left(x\right)=f\left(-x\right)\) \(\forall x\)

Đặt \(x=-t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=-1\Rightarrow t=1\\x=0\Rightarrow t=0\end{matrix}\right.\)

\(\Rightarrow\int\limits^0_{-1}f\left(x\right)dx=\int\limits^0_1f\left(t\right).\left(-dt\right)=\int\limits^1_0f\left(t\right)dt=\int\limits^1_0f\left(x\right)dx\)

\(\Rightarrow I=\int\limits^1_0f\left(x\right)dx+\int\limits^1_0f\left(x\right)dx=2\int\limits^1_0f\left(x\right)dx=2\)

\(\Rightarrow\int\limits^1_0f\left(x\right)dx=1\)

Câu 5: Theo tính chất tích phân ta có:

\(\int\limits^{10}_0f\left(x\right)dx=\int\limits^2_0f\left(x\right)dx+\int\limits^6_2f\left(x\right)dx+\int\limits^{10}_6f\left(x\right)dx\)

\(\Rightarrow\int\limits^2_0f\left(x\right)dx+\int\limits^{10}_6f\left(x\right)dx=\int\limits^{10}_0f\left(x\right)dx-\int\limits^6_2f\left(x\right)dx=7-3=4\)