Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tỷ lệ thức tương đương:
(2x+3)(10x+2) = (5x+2)(4x+5)
=> 20x2 + 30x + 4x + 6 = 20x2 + 8x + 25x +10
=> 20x2 + 30x + 4x - 20x2 - 8x - 25x = 10 - 6
=> x = 4
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2\left(2x+3\right)-\left(4x+5\right)}{2\left(5x+2\right)-\left(10x+2\right)}=\frac{1}{2}\)
=> \(\frac{2x+3}{5x+2}=\frac{1}{2}\) => 2(2x+3) = 5x+ 2 => 4x + 6 = 5x + 2 => 6 - 2 = 5x - 4x => 4 = x
Vậy x = 4
\(a)\) Ta có :
\(\frac{x}{18}=\frac{y}{9}\)\(\Leftrightarrow\)\(\frac{x}{2}=y\)
\(\Rightarrow\)\(x=2y\)
Thay \(x=2y\) vào \(A=\frac{2x-3y}{2x+3y}\) ta được :
\(A=\frac{2.2y-3y}{2.2y+3y}=\frac{4y-3y}{4y+3y}=\frac{y}{7y}=\frac{1}{7}\)
Vậy ... ( tự kết luận )
Chúc bạn học tốt ~
Ta có:\(\orbr{\begin{cases}2x-3y=3\\x+2y=2\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}4x-6y=6\\3x+6y=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}7x=12\\3x+6y=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{12}{7}\\3x+6y=6\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{12}{7}\\y=\frac{1}{7}\end{cases}}\)
Vậy tỉ lệ thức \(\frac{y}{x}=\frac{1}{12}\)
Ta có: \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Rightarrow\left(2x+3\right).\left(10x+2\right)=\left(5x+2\right).\left(4x+5\right)\)
\(\Rightarrow20x^2+4x+30x+6=10x^2+25x+8x+10\)
\(\Rightarrow34x+6=33x+10\)
\(\Rightarrow34x-33x=-6+10\)
\(\Rightarrow x=4\)
Ta có:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Rightarrow\left(2x+3\right)\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(\Rightarrow20x^2+34x+6=20x^2+33x+10\)
\(\Rightarrow\left(20x^2+34x+6\right)-\left(20x^2+33x+6\right)=\left(20x^2+33x+10\right)-\left(20x^2+33x+6\right)\)
\(\Rightarrow\left(20x^2-20x^2\right)+\left(34x-33x\right)+\left(6-6\right)=\left(20x^2-20x^2\right)+\left(33x-33x\right)+\left(10-6\right)\)
\(\Rightarrow x=4\)
Vậy x = 4.
\(A=\frac{x^2-10x+36}{x-5}=\frac{x^2-10x+25+9}{x-5}\) \(=\frac{\left(x-5\right)^2+9}{x-5}=x-5+\frac{9}{x-5}\)
để \(A\in Z\)
<=> \(\frac{9}{x-5}\in Z\)mà \(x\in Z\)
=> \(x-5\inƯ\left(9\right)\)
=> \(x-5\in\left(1;-1;3;-3;9;-9\right)\)
=> \(x\in\left(6;4;8;2;14;-4\right)\)
học tốt
áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}=\frac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x+1\right)}=\frac{3}{6}=\frac{1}{2}\)
=> \(\frac{3x+2}{5x+7}=\frac{1}{2}\)=> 2(3x+2) = 5x + 7 => 6x + 4 = 5x + 7 => 6x - 5x = 7 - 4 => x = 3
Vậy x = 3
<=>(2x+3)(10x+2)=(5x+2)(4x+5)
<=>2x(10x+2)+3(10x+2)=5x(4x+5)+2(4x+5)
<=>20x2+4x+30x+6=20x2+25x+8x+10
<=>34x+6=33x+10 (bỏ mỗi vế 20x2)
<=>34x-33x=-6+10
<=>x=4
Vậy x=4