Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)
Giá trị của x thỏa mãn:
\(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{4}\right)^{\frac{3}{2}.x-4}\)
\(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{4}\right)^{\frac{3}{2}x-4}\)
=> \(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{2}\right)^{2\left(\frac{3}{2}x-4\right)}\)
=> \(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{2}\right)^{3x-8}\)
=> \(x+4=3x-8\)
=> \(3x-8-x=4\)
=> \(2x-8=4\)
=> \(2x=12\)
=> \(x=\frac{12}{2}=6\)
\(\left(\frac{1}{2}\right)^{-x+4}=\left(\frac{1}{4}\right)^{\frac{3}{2}x-4}\)
=>\(\left(\frac{1}{2}\right)^{-x+4}=\left(\frac{1}{2}\right)^{3x-8}\)
=>-x+4=3x-8
<=>4x=12
<=>x=3
Vậy x=3
\(\left(\frac{1}{4}\right)^{\frac{3}{2}-4}=\left(\frac{1}{2}\right)^{2.\left(\frac{3}{2}-4\right)}=\left(\frac{1}{2}\right)^{-1}\)
; do đó -x + 4 = -1
=> -x = -1 - 4 = -5
=> x = 5
\(\frac{|x|}{186}=\left(1-\frac{30}{31}\right)+\left(\frac{60}{61}-1\right)\)
\(\Leftrightarrow|x|=186\left(\frac{1}{31}-\frac{1}{61}\right)\)
\(\Leftrightarrow|x|=6-\frac{186}{61}\)
\(\Leftrightarrow|x|=\frac{180}{61}\)
\(\Leftrightarrow x=\pm\frac{180}{61}\)
\(\frac{1}{x\left(x+1\right)}=\frac{\left(x+1\right)-x}{x\left(x+1\right)}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
=>\(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
=>\(\frac{1}{x}-\frac{1}{x+1}-\frac{1}{x}=\frac{1}{2011}\)
=>\(\frac{1}{x}-\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2011}\)
=>\(0-\frac{1}{x+1}=\frac{1}{2011}\)
=>\(-\frac{1}{x+1}=\frac{1}{2011}\)
=>-x+1=2011
=>-x=2011-1
=>-x=2010
=>x=-2010
Vậy x=-2010
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)
<=>\(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
<=>\(-\frac{1}{x+1}=\frac{1}{2011}\)
<=>-x-1=2011
<=>x=-2012
Đáp số: \(x=-2012\)