\(\frac{1}{1+2}=\frac{1}{1+2+3}=.......=\frac{1}{1+2+3+...+99}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

 = 1 đó em

Cách giải: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

5 tháng 1 2016

Đặt \(S=\frac{1}{2.3:2}+\frac{1}{3.4:2}+....+\frac{1}{99.100:2}\)

\(\frac{1}{2}S=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{100}\)

\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
S = 49/100 x 2 = 49/50

A = \(S+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=1\)

3 tháng 1 2016

ko bít làm

28 tháng 12 2015

1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+99 +1/50

=1/(2+1).2:2+1/(3+1).3:2+1/(4+1).4:2+..+1/(99+1).99:2+1/50

=2/2.3+2/3.4+2/4.5+..+2/99.100+1/50

=2(1/2.3+1/3.4+1/4.5+..+1/99.100)+1/50

=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100)+1/50

=2(1/2-1/100)+1/50

=49/50+1/50=1

 

30 tháng 3 2017

Ta có 99/1+98/2+97/3+...+1/99=(98/2+1)+(97/3+1)+...+(1/99+1)+1

=100/2+100/3+...+100/99+100/100

=100(1/2+1/3=1/4+1/5+...+1/99+1/100)

Vậy (1/2+1/3+...+1/100)/((99/1+98/2+...+1/99)=1/100

30 tháng 3 2017

xét mẫu số = \(\frac{99}{1}\)+\(\frac{98}{2}\)+....+\(\frac{1}{99}\)

mẫu số = (\(1+\frac{98}{2}\))+(\(1+\frac{97}{3}\))+.......+(\(1+\frac{1}{99}\))

mẫu số = \(\frac{100}{2}\)+\(\frac{100}{3}\)+....+\(\frac{100}{99}\)

mẫu số =100 x (\(\frac{1}{2}\)+\(\frac{1}{3}\)+....+\(\frac{1}{99}\))             (1)

thay (1) vào biểu thức trên

1/2+1/3+1/4+.....+1/100  /   100 x (1/2+1/3+...+1/99)

\(\frac{1}{100}\)

9 tháng 11 2021

A=1 đoán :))

3 tháng 1 2016

xin lỗi em mới học lớp 6