K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

\(M=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)-3\tan39^0\cdot\cot39^0\\ M=\left(\sin^210^0+\cos^210^0\right)+\left(\sin^220^0+\cos^220^0\right)-3\cdot1=1+1-3=-1\)

2 tháng 11 2021

GTLN của B = -x-2021+10√x là

15 tháng 10 2018

A=sin^2 70°+sin^2 80°+sin^2 10°+sin^2 20°

\(=\sin^270^o+sin^280^o+sin^210^o+sin^220^o.\)

Nhập zô máy tính như sau:

\(=Sin\left(70\right)^2+Sin\left(80\right)^2+Sin\left(10\right)^2+Sin\left(20\right)^2\)

\(=2\)

Nếu bn ko đc dùng máy tính thì dùng bảng cx đc nha

15 tháng 7 2017

A=(sin​​​220°+sin270°)+(sin230°+sin260°)

+(sin240°+sin250°)-tan245°

=(sin​​220°+cos​220°)+(sin230°+cos230°)+(sin240°+cos240°)-1

=1+1+1-1=2

3 tháng 8 2018

kết quả là 2

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:
\(M=\frac{\frac{\sin a}{\cos a}+1}{\frac{\sin a}{\cos a}-1}=\frac{\tan a+1}{\tan a-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=-4\)

\(N = \frac{\frac{\sin a\cos a}{\cos ^2a}}{\frac{\sin ^2a-\cos ^2a}{\cos ^2a}}=\frac{\frac{\sin a}{\cos a}}{(\frac{\sin a}{\cos a})^2-1}=\frac{\tan a}{\tan ^2a-1}=\frac{\frac{3}{5}}{\frac{3^2}{5^2}-1}=\frac{-15}{16}\)

25 tháng 9 2018

\(\sin^210^o+\sin^220^o+\sin^230^o+\sin^240^o+\sin^250^o+\sin^260^o+\sin^270^o+\sin^280^o\)

\(=\cos^280^o+\cos^270^o+\cos^260^o+\cos^250^o+\sin^250^o+\sin^260^o+\sin^270^o+\sin^280^o\)

\(=\left(\sin^280^o+\cos^280^o\right)+\left(\sin^270^o+\cos^270^o\right)+\left(\sin^260^o+\cos^260^o\right)+\left(\sin^250^o+\cos^250^o\right)\)

\(=1+1+1+1\)

\(=4\)

Vậy ....

30 tháng 7 2021

\(\left(\sqrt{\dfrac{1+sin\alpha}{1-sin\alpha}}+\sqrt{\dfrac{1-sin\alpha}{1+sin\alpha}}\right).\dfrac{1}{\sqrt{1+tan^2\alpha}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{\left(1-sin\alpha\right)\left(1+sin\alpha\right)}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{\left(1+sin\alpha\right)\left(1-sin\alpha\right)}}\right).\dfrac{1}{\sqrt{1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{1-sin^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{1-sin^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{cos^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{cos^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{1}{cos^2\alpha}}}\)

\(=\left(\dfrac{1+sin\alpha}{cos\alpha}+\dfrac{1-sin\alpha}{cos\alpha}\right).\dfrac{1}{\dfrac{1}{cos\alpha}}=\dfrac{2}{cos\alpha}.cos\alpha=2\)

\(A=sin^210^o+sin^220^o+sin^230^o+sin^240^o+sin^250^o+sin^260^o+sin^270^o+sin^280^o\)

\(A=\left(sin^210^o+sin^280^o\right)+\left(sin^220^o+sin^270^o\right)+\left(sin^230^o+sin^260^o\right)+\left(sin^240^o+sin^250^o\right)\)

\(A=\left(sin^210^o+cos^210^o\right)+\left(sin^220^o+cos^220^o\right)+\left(sin^230^o+cos^230^o\right)+\left(sin^240^o+cos^240^o\right)\)

\(A=1+1+1+1\)

\(A=4\)