K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

\(\frac{x+1}{x+4}=4\)<=>\(\frac{x+1}{x+4}=\frac{4\left(x+4\right)}{x+4}\)

<=>\(x+1=4x+4\)<=>\(x=-1\) thay x=3 vào 3x+8=>\(3\times-1+8=5\)

18 tháng 7 2017

Nếu \(\frac{x+1}{x+4}=4\)

<=> \(x=0\)

Thay x=0 vào BT ta có 3.0+8=0+8=8

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

30 tháng 1 2019

\(\text{Giải}\)

\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{32}{4x^2-16}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{\left(x+2\right)\left(2x+4\right)}{\left(2x-4\right)\left(2x+4\right)}-\frac{\left(2-x\right)\left(2x-4\right)}{\left(2x-4\right)\left(2x+4\right)}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{2x^2+8x+8}{\left(2x-4\right)\left(2x+4\right)}-\frac{4x^2-8+4x}{\left(2x-4\right)\left(2x+4\right)}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\frac{2x^2+8x+8-4x^2+8-4x+32}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}\)

\(A=\frac{4x-2x^2+48}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}\)

\(A=\frac{2\left(2x-x^2+24\right)}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}=\frac{2\left(2x-x^2+24\right)\left(x-2\right)}{\left(2x-4\right)\left(2x+4\right)\left(x-1\right)}\)

\(=\frac{2\left(2x-x^2+24\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)\left(x-1\right)}=\frac{2x-x^2+24}{\left(x-2\right)\left(x-1\right)}\)

c, Bạn tự giải hệ pt nhé :)

a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)

=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)

=>18x-12>=12x+12

=>6x>=24

=>x>=4

b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)

=>\(x^2+2x+1< x^2-2x+1\)

=>4x<0

=>x<0

c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì

\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)

=>\(2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

=>x<=4

20 tháng 11 2017

Gợi ý thôi nhé

a: x^2 - 5x + 8 = x^2 - 3x  - 2x + 6 + 2 = (x-3).(x-2) + 2

=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)

<=> x-3 thuộc Ư(2) do x nguyên

Các câu khác thì cứ làm sao cho nó thành đa thức như thế

20 tháng 11 2017

thanks nhé!