Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=2x^2\left(x^2-3x\right)-6x+5+3x\left(2x^2+2\right)-2-2x^4\)
\(=2x^4-6x^3-6x+5+6x^3+6x-2-2x^4\)
\(=3\)
Vậy gt của bt trên ko phụ thuộc vào gt của biến
A = (2x - 3)(3x + 5) - (x - 1)(6x + 2) + 3 - 5x
= 6x2 + 10x - 9x - 15 - 6x2 - 2x + 6x + 2 + 3 - 5x
= (6x2 - 6x2) + (10x - 9x - 2x + 6x - 5x) - (15 - 2 - 3)
= -10
Vậy A ko phụ thuộc vào giá trị của biến x
a, A = 6x^2+x-15-6x^2+4x+2+3-5x = -10
=> Gía trị của biểu thức A ko phụ thuộc vào giá trị của biến
k mk nha
\(A=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x=-10\)
Vậy giá trị biểu thức A không phụ thuộc vào biến x
\(A=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(A=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(A=\left(5x^2+x^2-6x^2\right)-\left(3x-3x\right)-\left(x^3-x^3\right)-10\)
\(A=0-0-0-10\)
\(A=-10\)
Vậy với mọi x thì A = -10
=> Giá trị của A không phụ thuộc vào biến x
(3x+5)2-2(3x+5)(3x-2)+(3x-2)2
=9x2+30x+25-2(9x2-6x+15x-10)+9x2-12x+4
=9x2+30x+25-18x2+12x-30x+20+9x2-12x+4
=49
=> GTBT không phụ thuộc vào giá trị của biến (đccm)
#H
Bài 1 :
a) \(x^2-6x+2023\)
\(=x^2-2\cdot x\cdot3+3^2+2014\)
\(=\left(x-3\right)^2+2014\ge2014\forall x\)
Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
b) \(B=\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\)
Dễ thấy đây là HĐT thứ 2
\(B=\left(3x-5-3x-5\right)^2\)
\(B=\left(-10\right)^2\)
\(B=100\)
=> tự kết luận
Bài 2 :
\(x^2+4x-45\)
\(=x^2+9x-5x-45\)
\(=x\left(x+9\right)-5\left(x+9\right)\)
\(=\left(x+9\right)\left(x-5\right)\)
1a) A=x2 - 6x + 9 +2014
A= (x-3)2 + 2014
ta có: (x-3)2\(\ge\)0\(\forall x\)
\(\Rightarrow\left(x+3\right)^2+2014\ge2014\)
Dấu "=" xảy ra <=> (x+3)2 = 0
<=> x+3=0
<=> x = -3
Vậy Amin=2014 <=> x = -3
b) B= \(\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\)
= \(\left(3x+5-3x+5\right)^2\)
= 52 = 25
2)\(x^2+4x-45\)
= \(x^2+9x-5x-45\)
=\(x\left(x+9\right)-5\left(x+9\right)\)
=\(\left(x-5\right)\left(x+9\right)\)
\(A=6x^2+3x+2x+1-\left(6x^2-x+6x-1\right)\)
=\(6x^2+5x+1-6x^2-5x+1\)
\(=2\)
Suy ra biểu thức có giá trị không phụ thuộc vào biến.
\(B=2x^3+x^2+x-2x^2-x-1-\left(2x^3+3x^2+6x-4x^2-6x-12\right)\)
\(=2x^3-x^2-1-2x^3+x^2+12\)
\(=11\)
Suy ra biểu thức có giá trị không phụ thuộc vào biến.
a,
A=(2x+1)(3x+1)-(6x-1)(x+1)
=6x2+2x+3x+1-(6x2+6x-x-1
=6x2+2x+3x+1-6x2-6x+x+1
=6x2-6x2+2x+3x-6x+x+1+1
=2
Đpcm
b,
B=(x-1)(2x2+x+x)-(x-2)(2x2+3x+6)
=2x3+x2+x-2x2-x-1-(2x3+3x2+6x-4x2-6x-12)
=2x3+x2+x-2x2-x-1-2x3-3x2-6x+4x2+6x+12
=2x3-2x3+x2-2x2-3x2+4x2+x-x-6x+6x-1+12
=11
Đpcm
b) \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(=x^3+x^2+x-x^3-x^2-x+5\)
\(=\left(x^2-x^2\right)+\left(x-x\right)+\left(x^3-x^3\right)+5\)
\(=0+0+0+5\)
\(=5\)
Giá trị của biểu thức trên luôn bằng 5 nên nó không phụ thuộc vào giá trị của biến.
a) \(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(=\left(5x^2+x^2-6x^2\right)+\left(x^3-x^3\right)+\left(3x-3x\right)-10\)
\(=0+0+0-10\)
\(=-10\)
Giá trị của biểu thức trên luôn bằng -10 nên nó không phụ thuộc vào giá trị của biến (đpcm)
\(C=\left(3x+2\right)^2-\left(3x+2\right)\left(3x-2\right)-6x\)
\(=9x^2+12x+4-\left(9x^2-4\right)-6x=6x+8\)
Vậy bth phụ thuộc biến x, ko có đpcm