K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=2x^4+3x^2y^2+y^4+y^2\)

\(=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2\left(x^2+y^2\right)=2\)

4 tháng 8 2024

Ta có :

\(P\left(x\right)=2x^4+3x^2y^2+y^4+y^2\)

\(\Rightarrow P\left(x\right)=x^4+2x^2y^2+y^4+x^4+x^2y^2+y^2\)

\(\Rightarrow P\left(x\right)=\left(x^2+y^2\right)^2+x^2\left(x^2+y^2\right)+y^2\)

\(\Rightarrow P\left(x\right)=1^2+x^2.1+y^2\) Vì \(\left(x^2+y^2=1\right)\)

\(\Rightarrow P\left(x\right)=1^2+x^2+y^2=1+1=2\)

Vậy \(P\left(x\right)=2\)

19 tháng 10 2023

a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)

= x² + 3xy - 3x³ + 2y³ - xy + 3x³

= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³

= x² + 2xy + 2y³

Tại x = 5 và y = 4

M = 5² + 2.5.4 + 2.4³

= 25 + 40 + 2.64

= 65 + 128

= 193

b) N = x²(x + y) - y(x² - y²)

= x³ + x²y - x²y + y³

= x³ + (x²y - x²y) + y³

= x³ + y³

Tại x = -6 và y = 8

N = (-6)³ + 8³

= -216 + 512

= 296

c) P = x² + 1/2 x + 1/16

= (x + 1/2)²

Tại x = 3/4 ta có:

P = (3/4 + 1/2)² = (5/4)² = 25/16

3 tháng 9 2018

P= 3x2 - [2x2-3x(x-4)] với x=\(\frac{-3}{2}\)

\(\Rightarrow P=\frac{27}{4}-\left[\frac{9}{2}-\frac{99}{4}\right]=\frac{27}{4}+\frac{81}{4}=\frac{108}{4}=27\)

Q=(x2 + y2) (x2y+y3)-y(x4+y4)với x=\(\frac{-1}{2}\) và y=3

\(\Rightarrow Q=\frac{37}{4}.\frac{111}{4}-\frac{3891}{16}=\frac{4107}{16}-\frac{3891}{16}=\frac{216}{16}=\frac{27}{2}\)

24 tháng 12 2017

a) \(B=\left(x^2+2x+1\right)+\left(y^2-2.2.y+2^2\right)=\left(x+1\right)^2+\left(y-2\right)^2\)

thay x=99 và y=102 vào B ta có:

\(B=\left(99+1\right)^2+\left(102-2\right)^2=100^2-100^2=0\)

b) 

24 tháng 12 2017

b) \(2x^2+16x+32-2y^2=2\left(x^2+8x+16-y^2\right)=2\left(\left(x+4\right)^2-y^2\right)=2\left(x+4-y\right)\left(x+4+y\right)\)

9 tháng 7 2019

mình hỏi vs 3y^2 là 3xy^2 phải không hay chỉ là 3y^2

9 tháng 7 2019

Bài 2: \(\hept{\begin{cases}x-y=-3\\x=\frac{10}{y}\end{cases}\Rightarrow}\)\(\frac{10}{y}-y=-3\Leftrightarrow y^2-3y-10=0\Leftrightarrow\orbr{\begin{cases}y=5\Rightarrow x=2\\y=-2\Rightarrow x=-5\end{cases}}\)

*Với x=2;y=5 =>P=-102

*Với x=-5;y=-2 =>P=45

15 tháng 6 2016

\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)

\(=4x^2-2y-5x^2+x^2-4y=-6y\)

\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)

\(=8\)

Vậy BT B ko phụ thuộc vào biến

câu sau tương tự

\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)

\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)

\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)

\(\Rightarrow3x^2+14x-2=0\)

\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)

\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)

15 tháng 6 2016

câu sau tự lm nhé,mk ko lm nữa đâu

Bài 2: 

a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)

b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)

19 tháng 9 2020

Câu 1.

B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )

= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2

= 18x2 + 18x + 3

| x | = 2 => x = ±2

Với x = 2 => B = 18.22 + 18.2 + 3 = 111

Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39

C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )

= 4x2 + 4xy + y2 + xy - xz - y2 + yz

= 4x2 + 5xy - xz + yz

Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9

Câu 2.

Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )

Theo đề bài ta có :

( a + 1 )( a + 2 ) - a( a + 1 ) = 50

<=> a2 + 3a + 2 - a2 - a = 50

<=> 2a + 2 = 50

<=> 2a = 48

<=> a = 24 ( tmđk )

=> a + 1 = 25 ; a + 2 = 26

Vậy ba số cần tìm là 24 ; 25 ; 26 

Câu 3.

Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4

( x + y )( x3 - x2y + xy2 - y3 )

= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4

= x4 - y4 ( đpcm )

Câu 1 :

\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)

\(=18x^2-4x-7\)

Với \(|x|=2\Rightarrow x=\pm2\)

Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)

Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)

Câu b tương tự

Câu 2 :

Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .

Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)

\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)

\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)

\(\Leftrightarrow2a=48\)

\(\Leftrightarrow a=24\)

Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .

Câu 3 :

Ta có :

\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)

\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)

\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)

\(=x^4-y^4\)

=> đpcm