Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
\(=\left(\dfrac{3^6}{9}-81\right)\left(\dfrac{3}{4}-81\right)\cdot\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
\(=\left(81-81\right)\left(\dfrac{3}{4}-81\right)\cdot\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
=0
b: \(\dfrac{69}{157}-\left(2+\left(3+4+5^{-1}\right)^{-1}\right)^{-1}\)
\(=\dfrac{69}{157}-\left(2+\left(3+4+\dfrac{1}{5}\right)^{-1}\right)^{-1}\)
\(=\dfrac{69}{157}-\left(2+1:\dfrac{36}{5}\right)^{-1}\)
\(=\dfrac{69}{157}-\left(2+\dfrac{5}{36}\right)^{-1}\)
\(=\dfrac{69}{157}-\left(\dfrac{77}{36}\right)^{-1}\)
\(=\dfrac{69}{157}-\dfrac{36}{77}=\dfrac{-339}{12089}\)
Đặt \(A=\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
\(=\left(\dfrac{3^6}{9}-81\right)\cdot\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
\(=\left(81-81\right)\cdot\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
=0
Bài 2:
x=13 nên x+1=14
\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)
\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)
=14-x=1
x=13 nên x+1=14
f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14
=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14
=14-x=1
\(f\left(x\right)=4x^2+3x+1\)
\(g\left(x\right)=3x^2-2x+1.\)
a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)
\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)
\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x.\)
b) Ta có \(h\left(x\right)=x^2+5x.\)
Đặt \(x^2+5x=0\)
\(\Rightarrow x.\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)
Chúc bạn học tốt!
Đặt \(A=\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{20}\right)\left(1+\dfrac{7}{33}\right)....\left(1+\dfrac{7}{2900}\right)\)
\(B=\left(81-\dfrac{3}{4}\right)\left(81-\dfrac{3^2}{5}\right)\left(81-\dfrac{3^3}{6}\right)....\left(81-\dfrac{3^{2014}}{2017}\right)\)
Ta có:
\(A=\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{20}\right)\left(1+\dfrac{7}{33}\right).....\left(1+\dfrac{7}{2900}\right)\)
\(A=\dfrac{16}{9}.\dfrac{27}{20}.\dfrac{40}{33}.....\dfrac{2907}{2900}\)
\(A=\dfrac{2.8}{1.9}.\dfrac{3.9}{2.10}.\dfrac{4.10}{3.11}.....\dfrac{51.57}{50.58}\)
\(A=\dfrac{2.3.4.5.6....56.57}{1.2.3.4.5.....57.58}=\dfrac{1}{58}\)
\(B=\left(81-\dfrac{3}{4}\right)\left(81-\dfrac{3^2}{5}\right).....\left(81-\dfrac{3^{2014}}{2017}\right)\)
Vì trong dãy số trên có một thừa số là \(\left(81-\dfrac{3^6}{9}\right)=\left(81-81\right)=0\)
\(\Rightarrow B=0\)
Vì \(a=A+B\Rightarrow a=\dfrac{1}{58}+0=\dfrac{1}{58}\)(1)
Thay (1) vào đa thức \(f\left(x\right)=5x-29a\) ta được:
\(f\left(x\right)=5x-29.\dfrac{1}{58}=5x-\dfrac{1}{2}\)
Ta lại có:
\(f\left(x\right)=0\Leftrightarrow5x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{10}\)
Vậy nghiệm của đa thức trên là \(\dfrac{1}{10}\)
Chúc bạn học tốt!!!
Trong dãy số ta có một thừa số là : \(\dfrac{3^6}{9}-81=81-81=0\)
=> Giá trị của biểu thức :
\(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2011}}{2014}-81\right)=0\)
Bài này lúc đi thi mk ko làm đc nè... đến h mới bít kết quả ^^