K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

a,Ta có tam giác ABC cân tại A

==> Góc ABC =ACB

Mà góc ABM+ABC = 180 độ ( 2 góc kề bù )

==> Góc ABM = 180 độ - góc ABC (1)

        Góc ACB+ACN= 180 độ ( 2 gÓC KỀ BÙ )

==> Góc ACB = 180độ - góc ACN (2)

Từ 1 và 2 suy ra :

Góc ABM=ACB 

Xét tam giác ABM và ACN có 

AB=AC ( gt)

Góc ABM=ACB  ( cmt )

BM= CN (GT)

==> Tam giác ABM =ACN (c.g.c )

==> AM=AN ( 2 cạnh tương ứng )

==> Tam giác AMN cân 

==> Góc AMB=ANC ( 2 góc tương ứng )

b, Xét tam giác BHM và CKN có :

Góc H=K (=90độ)

`BM=CN(GT)

Góc ABM=ANC (cmt)

==> TAm giác BHM= CKN ( c.h-g.n)

==> BH=CK ( 2 cạnh tương ứng )

c, Ta có : Góc ABC=ACB( cmp a )

Góc ABC+CBO=180 độ ( 2 góc kề bù)

==>CBO= 180 độ - ABC (3)

Góc ACB+ BCO = 180đọ ( 2 góc kề bù )

==> BCO= 180 độ - ACB (4)

Từ 3vaf 4 suy ra 

Góc BCO=CBO 

==> Tam giác OCB cân tại O

21 tháng 4 2020

a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)

mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN

=> Tam giác AMN cân tại A

b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)

<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)

=> AH=CK

31 tháng 10 2019

a) ∆ABC cân, suy ra  ˆB1=ˆC1B1^=C1^

 ⇒ˆABM=ˆACN⇒ABM^=ACN^

∆ABM và ∆CAN có:

AB = AC (gt)

ˆABM=ˆACNABM^=ACN^ 

BM = ON (gt)

Suy ra ˆM=ˆNM^=N^

=>∆AMN là tam giác cân ở A.

b) Hai tam giác vuông ∆BHM và ∆CKN có :

BM = CN (gt)

ˆM=ˆNM^=N^ (CM từ câu a)

Nên ∆BHM  = ∆CHN (cạnh huyền, góc nhọn)

Suy ra BH = CK.

c) Theo câu (a) ta có tam giác AMN cân ở A nên AM = AN (*)

Theo câu b ta có ∆BHM = ∆CKN nên suy ra HM = KN (**).

Do đó AH = AM – HM = AN – KN (theo (*) và (**)) = AK

Vậy AH = AK.

d) ∆BHM = ∆CKN suy ra ˆB2=ˆC2B2^=C2^  

Mà ˆB2=ˆB3;ˆC2=ˆC3B2^=B3^;C2^=C3^ (đối đỉnh)

Nên ˆB3=ˆC3B3^=C3^ .

Vậy ∆OBC là tam giác cân.

e) Khi ˆBAC=600BAC^=600 và BM = CN = BC.

+Tam giác cân ABC có ˆBAC=600BAC^=600 nên là tam giác đều.

Do đó: AB = BC = AC = BM = CN

ˆABM=ˆACN=1200ABM^=ACN^=1200 (cùng bù với 600)

∆ABM cân ở B nên ˆM=ˆBAM=1800–12002=300M^=BAM^=1800–12002=300 .

Suy ra ˆANM=ˆAMN=300ANM^=AMN^=300 .

Và ˆMAN=1800–(ˆAMN+ˆANM)=1800–2.300=1200MAN^=1800–(AMN^+ANM^)=1800–2.300=1200

Vậy ∆AMN có ˆM=ˆN=300;ˆA=1200.M^=N^=300;A^=1200.

+∆BHM có: ˆM=300M^=300 nên ˆB2=600B2^=600 (hai góc phụ nhau)

Suy ra ˆB3=600B3^=600

Tương tự ˆC3=600C3^=600

Tam giác OBC có ˆB3=ˆC3=600B3^=C3^=600 nên tam giác OBC là tam giác đều.

(Tam giác cân có một góc bằng 600 nên là tam giác đều).

7 tháng 3 2016

Tích cho nhox quậy phá cái 

Nhiệt tình đó

7 tháng 3 2016

gửi sau là lúc nào ?

1 tháng 3 2019

AI NHANH MIK CHO 3  NHA

1 tháng 3 2019

 tự kẻ hình :

a, tam giác ABC cân tại A (gt)

=> AB = AC (đn)         (1)

     góc ABC = góc ACB (đl)

góc ABC + góc ABM = 180 (kb)

góc ACB + góc ACN = 180 (kb)

=> góc ABM = góc ACN          (2)

xét tam giác ABM  và tam giác ACN có : BM = CN (gt) và (1); (2)

=> tam giác ABM = tam giác ACN (c-g-c)

=> MA = NA (đn)

=> tam giác AMN cân tại A (đn)

b, xét tam giác HBM và tam giác KCN có : MB = CN (gt)

góc M = góc N do tam giác AMN cân (câu a)

góc MHB = góc NKC = 90 do ...

=> tam giác HBM = tam giác KCN (ch - gn)

=> HB = CK (đn)

c, có AM = AN (Câu a)

AM = AH + HM

AN = AK + KN 

HM = KN do tam giác HBM = tam giác KCN (câu b)

=> HM = KN