Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^3=\dfrac{64}{3}\)
\(P_{min}=\dfrac{64}{3}\) khi \(x=y=z=\dfrac{4}{3}\)
Đặt \(\left(x;y;z\right)=\left(a+1;b+1;c+1\right)\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c\ge0\end{matrix}\right.\)
\(\Rightarrow0\le a;b;c\le1\) \(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\) \(\Rightarrow a^2+b^2+c^2\le a+b+c=1\)
\(P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\)
\(P=a^2+b^2+c^2+2\left(a+b+c\right)+3=a^2+b^2+c^2+5\le1+5=6\)
\(P_{max}=6\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(1;1;2\right)\) và hoán vị
Bài này ko biết làm theo kiểu toán sơ cấp, nhìn điều kiện \(x^2-y^2=4\) thì khá dễ đến việc hyperbolic hóa biến số, qua đó dễ dàng tìm được min của P là \(2\sqrt{5}-6\) . Nhưng sử dụng toán sơ cấp thì đúng là chưa nghĩ ra.
Cách hyperbolic hóa:
\(P=3x^2\left(x^2-4\right)+xy^3+xy\left(y^2+4\right)=3\left(xy\right)^2+xy^3+x^3y=3\left(xy\right)^2+xy\left(x^2+y^2\right)\)
Nếu x;y cùng dấu thì P>0, xét trong trường hợp x;y trái dấu. Không mất tính tổng quát, giả sử \(x>0\)
Từ giả thiết: \(x^2-y^2=4\Rightarrow\left(\dfrac{x}{2}\right)^2-\left(\dfrac{y}{2}\right)^2=1\) \(\Rightarrow\dfrac{x}{2}\ge1\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x}{2}=cosh\left(u\right)\\\dfrac{y}{2}=sinh\left(u\right)\end{matrix}\right.\)
\(P=3\left(4sinh\left(u\right).cosh\left(u\right)\right)^2+4sinh\left(u\right).cosh\left(u\right)\left[4sinh^2u+4cosh^2u\right]\)
\(=12sinh^2\left(2u\right)+8sinh\left(2u\right).cosh\left(2u\right)\)
\(=6\left[cosh\left(4u\right)-1\right]+4sinh\left(4u\right)\)
\(=6cosh\left(4u\right)+4sinh\left(4u\right)-6\)
\(=2\sqrt{5}\left(\dfrac{3}{\sqrt{5}}cosh\left(4u\right)+\dfrac{2}{\sqrt{5}}sinh\left(4u\right)\right)-6\)
\(=2\sqrt{5}cosh\left(4u+\alpha\right)-6\ge2\sqrt{5}-6\)
(Trong đó \(\dfrac{3}{\sqrt{5}}=cosh\left(\alpha\right)\) ; \(\dfrac{2}{\sqrt{5}}=sinh\left(\alpha\right)\))
Nhìn điểm rơi \(4u+\alpha=0\) với \(\alpha=arccosh\left(\dfrac{3}{\sqrt{5}}\right)=ln\left(\sqrt{5}\right)\) xuất hiện logarit tự nhiên thì mình không nghĩ bằng 1 pp sơ cấp nào đó có thể giải quyết được bài này.
C1:
\(x,y>0\)
\(M=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\)Theo BĐT AM-GM (Caushy) ta có:
\(M=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}.2\sqrt{\dfrac{1}{x^2}.\dfrac{1}{y^2}}+4=\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{15}{4}.\dfrac{1}{xy}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{x+y}{2}\right)^2}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{1}{2}\right)^2}=20\)Đẳng thức xảy ra \(\left\{{}\begin{matrix}x^2=\dfrac{1}{16}x^2\\y^2=\dfrac{1}{16}y^2\\x+y=1\\x,y>0\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)
Vậy \(MinM=20\)
Chịu !!